big update

This commit is contained in:
Robert Müller
2020-04-06 14:46:26 +02:00
parent 0f325676e5
commit 482f45df87
17 changed files with 1027 additions and 32 deletions

0
plots/__init__.py Normal file
View File

View File

@@ -0,0 +1,60 @@
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
import librosa
import librosa.display
# set LaTeX font
# ==============
nice_fonts = {
# Use LaTeX to write all text
"text.usetex": True,
"font.family": "serif",
# Use 10pt font in plots, to match 10pt font in document
"axes.labelsize": 16, # default 10
"font.size": 16, # default 10
# Make the legend/label fonts a little smaller
"legend.fontsize": 14, # default 8
"xtick.labelsize": 14, # default 8
"ytick.labelsize": 14, # default 8
}
mpl.rcParams.update(nice_fonts, )
mpl.rcParams['axes.unicode_minus'] = False
# TODO LaTex
fan_normal = '../data/mimii/-6_dB_fan/id_04/normal/00000042.wav'
fan_anomaly = '../data/mimii/-6_dB_fan/id_04/abnormal/00000048.wav'
pump_normal = '../data/mimii/-6_dB_pump/id_04/normal/00000042.wav'
pump_anomaly = '../data/mimii/-6_dB_pump/id_04/abnormal/00000042.wav'
slider_normal = '../data/mimii/-6_dB_slider/id_04/normal/00000042.wav'
slider_anomaly = '../data/mimii/-6_dB_slider/id_04/abnormal/00000042.wav'
valve_normal = '../data/mimii/-6_dB_valve/id_04/normal/00000042.wav'
valve_anomaly = '../data/mimii/-6_dB_valve/id_04/abnormal/00000042.wav'
fig = plt.figure(figsize=(17, 5))
for i, (p, title) in enumerate(zip([fan_normal, pump_normal, slider_normal, valve_normal, fan_anomaly, pump_anomaly, slider_anomaly, valve_anomaly],
['Fan', 'Pump', 'Slider', 'Valve', 'Fan', 'Pump', 'Slider', 'Valve'])):
plt.subplot(2, 4, i+1)
audio, sr = librosa.load(p, sr=None, mono=True)
# n_fft=1024, hop_length=256, n_mels=80, center=False, power=2.0
S = librosa.feature.melspectrogram(y=audio, sr=sr, n_fft=1024, hop_length=256, n_mels=80, center=False, power=2.0)
S_dB = librosa.power_to_db(S, ref=np.max)
librosa.display.specshow(S_dB, x_axis='s' if i == 4 else 'off', hop_length=256,
y_axis='mel' if i==4 else 'off', sr=16000, cmap='viridis')
if i < 4:
plt.title(title)
else:
plt.title(title + ' malfunction')
cbar_ax = fig.add_axes([0.94, 0.18, 0.015, 0.7])
cmap = mpl.cm.viridis
norm = mpl.colors.Normalize(vmin=0, vmax=-80)
cb1 = mpl.colorbar.ColorbarBase(cbar_ax, cmap=cmap,
norm=norm,
orientation='vertical',
format='%+2.0f dB')
plt.tight_layout()
fig.subplots_adjust(right=0.93)
plt.savefig('normal_vs_abnormal.png')

64
plots/playground.py Normal file
View File

@@ -0,0 +1,64 @@
import librosa
from matplotlib import pyplot as plt
import numpy as np
from models.utils import count_parameters
from models.ae import SubSpecCAE, AE, GlobalCAE
from cfg import ALL_DATASET_PATHS
import librosa.display
import librosa.feature
import seaborn as sns
purple = (126/255, 87/255, 194/255)
params_subspecae = count_parameters(SubSpecCAE())
params_ae = count_parameters(AE())
params_globalcae = count_parameters(GlobalCAE())
print(f'#Parameters SubSpecCAE: {params_subspecae}')
print(f'#Parameters AE: {params_ae}')
print(f'#SubSpecAe/#AE: {(params_subspecae/params_ae):.2f}')
print(f'#GlobalCAE: {params_globalcae}')
print(f'#GlobalCAE/#SubSpecCAE: {params_globalcae/params_subspecae}')
fig = plt.figure(figsize=(10, 5))
slider_normal = '../data/mimii/-6_dB_slider/id_04/normal/00000042.wav'
audio, sr = librosa.load(slider_normal)
waveplot = librosa.display.waveplot(audio, sr=sr)
plt.tight_layout()
plt.savefig('wavplot.png')
ids = range(0)
specs = []
i = 0
audios = list((ALL_DATASET_PATHS[1] / 'id_00' / 'normal').glob('*.wav'))
print(str(audios[80]))
audio, sr = librosa.load(str(audios[80]), sr=None)
mel_spec = librosa.feature.melspectrogram(audio, sr=sr, n_fft=1024, hop_length=256, n_mels=80, center=False, power=2.0)
mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)
librosa.display.specshow(mel_spec_db, hop_length=256, x_axis='s', y_axis='mel', cmap='viridis', sr=sr)
plt.savefig('notadjusted.png')
plt.clf()
centroids = []
for p in audios:
audio, sr = librosa.load(str(p), sr=None)
spectral_centroids = librosa.feature.spectral_centroid(audio, sr=sr)[0]
centroids += spectral_centroids.tolist()
sns.distplot(centroids, hist=True, kde=True,
color=purple,
hist_kws={'edgecolor':'black'},
kde_kws={'linewidth': 2})
plt.xlabel('Occurence counts')
plt.ylabel('Density')
plt.title('Spectral centroid distribution')
plt.tight_layout()
plt.savefig('hist.png')
def get_bands(centroids, n_mels=80):
std = np.std(centroids)
mu = np.mean(centroids)
return int((mu-3*std)/n_mels), int((mu+3*std)/n_mels)
print(get_bands(centroids))