Files
ae_toolbox_torch/networks/basic_ae.py

53 lines
1.8 KiB
Python

from torch.nn import Sequential, Linear, GRU
from data.dataset import DataContainer
from .modules import *
#######################
# Basic AE-Implementation
class BasicAE(Module, ABC):
def __init__(self, dataParams, **kwargs):
super(BasicAE, self).__init__()
self.dataParams = dataParams
self.latent_dim = kwargs.get('latent_dim', 2)
self.encoder = self._build_encoder()
self.decoder = self._build_decoder()
def _build_encoder(self):
encoder = Sequential()
encoder.add_module(f'EncoderLinear_{1}', Linear(6, 10, bias=True))
encoder.add_module(f'EncoderLinear_{2}', Linear(10, 10, bias=True))
gru = Sequential()
gru.add_module('Encoder', TimeDistributed(encoder))
gru.add_module('GRU', GRU(10, self.latent_dim))
return gru
def _build_decoder(self):
decoder = Sequential()
decoder.add_module(f'DecoderLinear_{1}', Linear(10, 10, bias=True))
decoder.add_module(f'DecoderLinear_{2}', Linear(10, self.dataParams['features'], bias=True))
gru = Sequential()
# There needs to be ab propper bat
gru.add_module('Repeater', Repeater((1, self.dataParams['size'], -1)))
gru.add_module('GRU', GRU(self.latent_dim, 10))
gru.add_module('GRU Filter', RNNOutputFilter())
gru.add_module('Decoder', TimeDistributed(decoder))
return gru
def forward(self, batch):
batch_size = batch.shape[0]
self.decoder.Repeater.shape = (batch_size, ) + self.decoder.Repeater.shape[-2:]
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
outputs, _ = self.encoder(batch)
z = outputs[:, -1]
x_hat = self.decoder(z)
return z, x_hat
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')