43 lines
1.1 KiB
Python
43 lines
1.1 KiB
Python
from networks.basic_ae import BasicAE
|
|
from networks.modules import LightningModule
|
|
import pytorch_lightning as pl
|
|
from torch.nn.functional import mse_loss
|
|
from torch.optim import Adam
|
|
|
|
from torch.utils.data import DataLoader
|
|
from data.dataset import DataContainer
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
|
|
class AEModel(LightningModule):
|
|
|
|
def __init__(self, dataParams: dict):
|
|
super(AEModel, self).__init__()
|
|
self.dataParams = dataParams
|
|
self.network = BasicAE(self.dataParams)
|
|
|
|
def forward(self, x):
|
|
return self.network.forward(x)
|
|
|
|
def training_step(self, x, batch_nb):
|
|
z, x_hat = self.forward(x)
|
|
return {'loss': mse_loss(x, x_hat)}
|
|
|
|
def configure_optimizers(self):
|
|
# ToDo: Where do i get the Paramers from?
|
|
return [Adam(self.parameters(), lr=0.02)]
|
|
|
|
@pl.data_loader
|
|
def tng_dataloader(self):
|
|
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
ae = AEModel(
|
|
dict(refresh=False, size=5, step=5, features=6)
|
|
)
|
|
|
|
trainer = Trainer()
|
|
trainer.fit(ae)
|