ae_toolbox_torch/basic_ae_lightning_torch.py

43 lines
1.1 KiB
Python

from networks.basic_ae import BasicAE
from networks.modules import LightningModule
import pytorch_lightning as pl
from torch.nn.functional import mse_loss
from torch.optim import Adam
from torch.utils.data import DataLoader
from data.dataset import DataContainer
from pytorch_lightning import Trainer
class AEModel(LightningModule):
def __init__(self, dataParams: dict):
super(AEModel, self).__init__()
self.dataParams = dataParams
self.network = BasicAE(self.dataParams)
def forward(self, x):
return self.network.forward(x)
def training_step(self, x, batch_nb):
z, x_hat = self.forward(x)
return {'loss': mse_loss(x, x_hat)}
def configure_optimizers(self):
# ToDo: Where do i get the Paramers from?
return [Adam(self.parameters(), lr=0.02)]
@pl.data_loader
def tng_dataloader(self):
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
if __name__ == '__main__':
ae = AEModel(
dict(refresh=False, size=5, step=5, features=6)
)
trainer = Trainer()
trainer.fit(ae)