
ToDo: Visualization for variational spaces Trajectory Coloring Post Processing Metric Slurm Skript
138 lines
5.1 KiB
Python
138 lines
5.1 KiB
Python
from networks.auto_encoder import *
|
|
import os
|
|
import time
|
|
from networks.variational_auto_encoder import *
|
|
from networks.adverserial_auto_encoder import *
|
|
from networks.seperating_adversarial_auto_encoder import *
|
|
from networks.modules import LightningModule
|
|
from torch.optim import Adam
|
|
from torch.utils.data import DataLoader
|
|
from pytorch_lightning import data_loader
|
|
from dataset import DataContainer
|
|
|
|
from torch.nn import BatchNorm1d
|
|
from pytorch_lightning import Trainer
|
|
from test_tube import Experiment
|
|
|
|
from argparse import Namespace
|
|
from argparse import ArgumentParser
|
|
|
|
args = ArgumentParser()
|
|
args.add_argument('step')
|
|
args.add_argument('features')
|
|
args.add_argument('size')
|
|
args.add_argument('latent_dim')
|
|
|
|
|
|
# ToDo: How to implement this better?
|
|
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
|
class Model(AutoEncoderLightningOverrides, LightningModule):
|
|
|
|
def __init__(self, latent_dim=0, size=0, step=0, features=0, **kwargs):
|
|
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
|
|
self.size = args.size
|
|
self.latent_dim = args.latent_dim
|
|
self.features = args.features
|
|
self.step = args.step
|
|
super(Model, self).__init__()
|
|
self.network = AutoEncoder(self.latent_dim, self.features)
|
|
|
|
def configure_optimizers(self):
|
|
return [Adam(self.parameters(), lr=0.02)]
|
|
|
|
@data_loader
|
|
def tng_dataloader(self):
|
|
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
|
|
|
|
|
|
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
|
|
|
@property
|
|
def name(self):
|
|
return self.network.name
|
|
|
|
def __init__(self, args: Namespace, **kwargs):
|
|
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
|
|
self.size = args.size
|
|
self.latent_dim = args.latent_dim
|
|
self.features = args.features
|
|
self.step = args.step
|
|
super(AdversarialModel, self).__init__()
|
|
self.normal = Normal(0, 1)
|
|
self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
|
|
pass
|
|
|
|
# This is Fucked up, why do i need to put an additional empty list here?
|
|
def configure_optimizers(self):
|
|
return [Adam(self.network.discriminator.parameters(), lr=0.02),
|
|
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
|
|
[]
|
|
|
|
@data_loader
|
|
def tng_dataloader(self):
|
|
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100)
|
|
|
|
|
|
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
|
|
|
def __init__(self, args: Namespace, **kwargs):
|
|
assert all([x in args for x in ['step', 'size', 'latent_dim', 'features']])
|
|
self.size = args.size
|
|
self.latent_dim = args.latent_dim
|
|
self.features = args.features
|
|
self.step = args.step
|
|
super(SeparatingAdversarialModel, self).__init__()
|
|
self.normal = Normal(0, 1)
|
|
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features, **kwargs)
|
|
pass
|
|
|
|
# This is Fucked up, why do i need to put an additional empty list here?
|
|
def configure_optimizers(self):
|
|
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
|
|
, lr=0.02),
|
|
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
|
|
, lr=0.02),
|
|
Adam([*self.network.temporal_encoder.parameters(),
|
|
*self.network.spatial_encoder.parameters(),
|
|
*self.network.decoder.parameters()]
|
|
, lr=0.02)], []
|
|
|
|
@data_loader
|
|
def tng_dataloader(self):
|
|
num_workers = os.cpu_count() // 2
|
|
return DataLoader(DataContainer('data', self.size, self.step), shuffle=True, batch_size=100, num_workers=num_workers)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
features = 6
|
|
tag_dict = dict(features=features, latent_dim=4, size=5, step=6, refresh=False,
|
|
transforms=[BatchNorm1d(features)])
|
|
arguments = args.parse_args()
|
|
arguments.__dict__.update(tag_dict)
|
|
|
|
model = SeparatingAdversarialModel(arguments)
|
|
|
|
# PyTorch summarywriter with a few bells and whistles
|
|
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
|
|
os.makedirs(outpath, exist_ok=True)
|
|
exp = Experiment(save_dir=outpath)
|
|
exp.tag(tag_dict=tag_dict)
|
|
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
|
checkpoint_callback = ModelCheckpoint(
|
|
filepath=os.path.join(outpath, 'weights.ckpt'),
|
|
save_best_only=True,
|
|
verbose=True,
|
|
monitor='tng_loss', # val_loss
|
|
mode='min',
|
|
)
|
|
|
|
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint_callback, max_nb_epochs=15) # gpus=[0...LoL]
|
|
trainer.fit(model)
|
|
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))
|
|
|
|
# view tensorflow logs
|
|
print(f'View tensorboard logs by running\ntensorboard --logdir {outpath}')
|
|
print('and going to http://localhost:6006 on your browser')
|