from .modules import * from torch.nn.functional import mse_loss ####################### # Basic AE-Implementation class VariationalAutoEncoder(Module, ABC): @property def name(self): return self.__class__.__name__ def __init__(self, dataParams, **kwargs): super(VariationalAutoEncoder, self).__init__() self.dataParams = dataParams self.latent_dim = kwargs.get('latent_dim', 2) self.encoder = Encoder(self.latent_dim, variational=True) self.decoder = Decoder(self.latent_dim, self.dataParams['features'], variational=True) @staticmethod def reparameterize(mu, logvar): # Lambda Layer, add gaussian noise std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def forward(self, batch): mu, logvar = self.encoder(batch) z = self.reparameterize(mu, logvar) repeat = Repeater((batch.shape[0], self.dataParams['size'], -1)) x_hat = self.decoder(repeat(z)) return x_hat, mu, logvar class VariationalAutoEncoderLightningOverrides: def forward(self, x): return self.network.forward(x) def training_step(self, x, _): x_hat, logvar, mu = self.forward(x) BCE = mse_loss(x_hat, x, reduction='mean') # see Appendix B from VAE paper: # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return {'loss': BCE + KLD} if __name__ == '__main__': raise PermissionError('Get out of here - never run this module')