from .modules import * from torch.nn.functional import mse_loss from torch import Tensor ####################### # Basic AE-Implementation class AutoEncoder(Module, ABC): @property def name(self): return self.__class__.__name__ def __init__(self, dataParams, **kwargs): super(AutoEncoder, self).__init__() self.dataParams = dataParams self.latent_dim = kwargs.get('latent_dim', 2) self.encoder = Encoder(self.latent_dim) self.decoder = Decoder(self.latent_dim, self.dataParams['features']) def forward(self, batch: Tensor): # Encoder # outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size) z = self.encoder(batch) # Decoder # First repeat the data accordingly to the batch size z_repeatet = Repeater((batch.shape[0], self.dataParams['size'], -1))(z) x_hat = self.decoder(z_repeatet) return z, x_hat class AutoEncoderLightningOverrides: def forward(self, x): return self.network.forward(x) def training_step(self, x, batch_nb): # z, x_hat _, x_hat = self.forward(x) loss = mse_loss(x, x_hat) return {'loss': loss} if __name__ == '__main__': raise PermissionError('Get out of here - never run this module')