from torch.optim import Adam from .modules import * from torch.nn.functional import mse_loss ####################### # Basic AE-Implementation class VariationalAE(AbstractNeuralNetwork, ABC): @property def name(self): return self.__class__.__name__ def __init__(self, latent_dim=0, features=0, use_norm=True, train_on_predictions=False, **kwargs): assert latent_dim and features super(VariationalAE, self).__init__() self.features = features self.latent_dim = latent_dim self.encoder = Encoder(self.latent_dim, variational=True, use_norm=use_norm) self.decoder = Decoder(self.latent_dim, self.features, variational=True, use_norm=use_norm) @staticmethod def reparameterize(mu, logvar): # Lambda Layer, add gaussian noise std = torch.exp(0.5*logvar) eps = torch.randn_like(std) return mu + eps*std def forward(self, batch): mu, logvar = self.encoder(batch) z = self.reparameterize(mu, logvar) repeat = Repeater((batch.shape[0], batch.shape[1], -1)) x_hat = self.decoder(repeat(z)) return mu, logvar, x_hat def training_step(self, batch, _): x, y = batch mu, logvar, x_hat = self.forward(x) BCE = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat) # see Appendix B from VAE paper: # Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014 # https://arxiv.org/abs/1312.6114 # 0.5 * sum(1 + log(sigma^2) - mu^2 - sigma^2) KLD = -0.5 * torch.sum(1 + logvar - mu.pow(2) - logvar.exp()) return {'loss': BCE + KLD} def configure_optimizers(self): return [Adam(self.parameters(), lr=0.004)] if __name__ == '__main__': raise PermissionError('Get out of here - never run this module')