from torch.optim import Adam from .modules import * from torch.nn.functional import mse_loss from torch import Tensor ####################### # Basic AE-Implementation class AutoEncoder(AbstractNeuralNetwork, ABC): def __init__(self, latent_dim: int=0, features: int = 0, use_norm=True, train_on_predictions=False, **kwargs): assert latent_dim and features super(AutoEncoder, self).__init__() self.train_on_predictions = train_on_predictions self.latent_dim = latent_dim self.features = features self.encoder = Encoder(self.latent_dim, use_norm=use_norm) self.decoder = Decoder(self.latent_dim, self.features, use_norm=use_norm) def forward(self, batch: Tensor): # Encoder # outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size) z = self.encoder(batch) # Decoder # First repeat the data accordingly to the batch size z_repeatet = Repeater((batch.shape[0], batch.shape[1], -1))(z) x_hat = self.decoder(z_repeatet) return z, x_hat def training_step(self, batch, batch_nb): x, y = batch # z, x_hat _, x_hat = self.forward(x) loss = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat) return {'loss': loss} def configure_optimizers(self): return [Adam(self.parameters(), lr=0.02)] if __name__ == '__main__': raise PermissionError('Get out of here - never run this module')