from torch.optim import Adam from networks.auto_encoder import AutoEncoder from torch.nn.functional import mse_loss from networks.modules import * import torch device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') class AdversarialAE(AutoEncoder): def __init__(self, *args, train_on_predictions=False, use_norm=False, **kwargs): super(AdversarialAE, self).__init__(*args, **kwargs) self.discriminator = Discriminator(self.latent_dim, self.features, use_norm=use_norm) self.train_on_predictions = train_on_predictions def forward(self, batch): # Encoder # outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size) z = self.encoder(batch) # Decoder # First repeat the data accordingly to the batch size z_repeatet = Repeater((batch.shape[0], batch.shape[1], -1))(z) x_hat = self.decoder(z_repeatet) return z, x_hat def training_step(self, batch, _, optimizer_i): x, y = batch z, x_hat = self.forward(x) if optimizer_i == 0: # --------------------- # Train Discriminator # ---------------------p # latent_fake, reconstruction latent_fake = z latent_real = self.normal.sample(latent_fake.shape).to(device) # Evaluate the input d_real_prediction = self.network.discriminator.forward(latent_real) d_fake_prediction = self.network.discriminator.forward(latent_fake) # Train the discriminator d_loss_real = mse_loss(d_real_prediction, torch.zeros(d_real_prediction.shape, device=device)) d_loss_fake = mse_loss(d_fake_prediction, torch.ones(d_fake_prediction.shape, device=device)) # Calculate the mean over both the real and the fake acc # ToDo: do i need to compute this seperate? d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake) * 0.001 return {'loss': d_loss} elif optimizer_i == 1: # --------------------- # Train AutoEncoder # --------------------- loss = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat) return {'loss': loss} else: raise RuntimeError('This should not have happened, catch me if u can.') #FIXME: This is Fucked up, why do i need to put an additional empty list here? def configure_optimizers(self): return [Adam(self.network.discriminator.parameters(), lr=0.02), Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02), ],\ [] if __name__ == '__main__': raise PermissionError('Get out of here - never run this module')