from torch.distributions import Normal from torch.cuda import is_available import time import os from argparse import Namespace from argparse import ArgumentParser from distutils.util import strtobool from networks.auto_encoder import AutoEncoder, AutoEncoder_LO from networks.variational_auto_encoder import VariationalAE, VAE_LO from networks.adverserial_auto_encoder import AdversarialAE_LO, AdversarialAE from networks.seperating_adversarial_auto_encoder import SeperatingAAE, SeparatingAAE_LO from networks.modules import LightningModule from pytorch_lightning import Trainer from test_tube import Experiment args = ArgumentParser() args.add_argument('--step', default=5) args.add_argument('--features', default=6) args.add_argument('--size', default=9) args.add_argument('--latent_dim', default=2) args.add_argument('--model', default='AE_Model') args.add_argument('--refresh', type=strtobool, default=False) args.add_argument('--future_predictions', type=strtobool, default=False) args.add_argument('--use_norm', type=strtobool, default=True) class AE_Model(AutoEncoder_LO, LightningModule): def __init__(self, parameters): assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']]) self.size = parameters.size self.latent_dim = parameters.latent_dim self.features = parameters.features self.step = parameters.step super(AE_Model, self).__init__(train_on_predictions=parameters.future_predictions) self.network = AutoEncoder(self.latent_dim, self.features, use_norm=parameters.use_norm) class VAE_Model(VAE_LO, LightningModule): def __init__(self, parameters): assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']]) self.size = parameters.size self.latent_dim = parameters.latent_dim self.features = parameters.features self.step = parameters.step super(VAE_Model, self).__init__(train_on_predictions=parameters.future_predictions) self.network = VariationalAE(self.latent_dim, self.features, use_norm=parameters.use_norm) class AAE_Model(AdversarialAE_LO, LightningModule): def __init__(self, parameters: Namespace): assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']]) self.size = parameters.size self.latent_dim = parameters.latent_dim self.features = parameters.features self.step = parameters.step super(AAE_Model, self).__init__(train_on_predictions=parameters.future_predictions) self.normal = Normal(0, 1) self.network = AdversarialAE(self.latent_dim, self.features, use_norm=parameters.use_norm) pass class SAAE_Model(SeparatingAAE_LO, LightningModule): def __init__(self, parameters: Namespace): assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']]) self.size = parameters.size self.latent_dim = parameters.latent_dim self.features = parameters.features self.step = parameters.step super(SAAE_Model, self).__init__(train_on_predictions=parameters.future_predictions) self.normal = Normal(0, 1) self.network = SeperatingAAE(self.latent_dim, self.features, use_norm=parameters.use_norm) pass if __name__ == '__main__': arguments = args.parse_args() model = globals()[arguments.model](arguments) # PyTorch summarywriter with a few bells and whistles outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-')) os.makedirs(outpath, exist_ok=True) exp = Experiment(save_dir=outpath) exp.tag(tag_dict=arguments.__dict__) from pytorch_lightning.callbacks import ModelCheckpoint checkpoint_callback = ModelCheckpoint( filepath=os.path.join(outpath, 'weights'), save_best_only=False, verbose=True, period=4 ) trainer = Trainer(experiment=exp, max_nb_epochs=60, gpus=[0] if is_available() else None, row_log_interval=1000, checkpoint_callback=checkpoint_callback ) trainer.fit(model) trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt')) # view tensorflow logs print(f'View tensorboard logs by running\ntensorboard --logdir {outpath}') print('and going to http://localhost:6006 on your browser')