Done: AE, VAE, AAE
ToDo: Double AAE, Visualization All Modularized
This commit is contained in:
60
run_models.py
Normal file
60
run_models.py
Normal file
@ -0,0 +1,60 @@
|
||||
from networks.auto_encoder import *
|
||||
from networks.variational_auto_encoder import *
|
||||
from networks.adverserial_auto_encoder import *
|
||||
from networks.modules import LightningModule
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
from pytorch_lightning import data_loader
|
||||
from dataset import DataContainer
|
||||
|
||||
from torch.nn import BatchNorm1d
|
||||
from pytorch_lightning import Trainer
|
||||
|
||||
|
||||
# ToDo: How to implement this better?
|
||||
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||
class Model(VariationalAutoEncoderLightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, dataParams: dict):
|
||||
super(Model, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.network = VariationalAutoEncoder(self.dataParams)
|
||||
|
||||
def configure_optimizers(self):
|
||||
return [Adam(self.parameters(), lr=0.02)]
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||
|
||||
|
||||
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, dataParams: dict):
|
||||
super(AdversarialModel, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = AdversarialAutoEncoder(self.dataParams)
|
||||
pass
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam(self.network.discriminator.parameters(), lr=0.02),
|
||||
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
|
||||
[]
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
features = 6
|
||||
ae = AdversarialModel(
|
||||
dataParams=dict(refresh=False, size=5, step=5,
|
||||
features=features, transforms=[BatchNorm1d(features)]
|
||||
)
|
||||
)
|
||||
|
||||
trainer = Trainer()
|
||||
trainer.fit(ae)
|
Reference in New Issue
Block a user