Visualization approach n
This commit is contained in:
@ -1,30 +1,32 @@
|
||||
from torch.distributions import Normal
|
||||
from networks.auto_encoder import *
|
||||
|
||||
import time
|
||||
from networks.variational_auto_encoder import *
|
||||
from networks.adverserial_auto_encoder import *
|
||||
from networks.seperating_adversarial_auto_encoder import *
|
||||
from networks.modules import LightningModule
|
||||
from pytorch_lightning import Trainer
|
||||
from test_tube import Experiment
|
||||
import os
|
||||
|
||||
from argparse import Namespace
|
||||
from argparse import ArgumentParser
|
||||
from distutils.util import strtobool
|
||||
|
||||
from networks.auto_encoder import AutoEncoder, AutoEncoder_LO
|
||||
from networks.variational_auto_encoder import VariationalAE, VAE_LO
|
||||
from networks.adverserial_auto_encoder import AdversarialAE_LO, AdversarialAE
|
||||
from networks.seperating_adversarial_auto_encoder import SeperatingAAE, SeparatingAAE_LO, SuperSeperatingAAE
|
||||
from networks.modules import LightningModule
|
||||
|
||||
from pytorch_lightning import Trainer
|
||||
from test_tube import Experiment
|
||||
|
||||
|
||||
args = ArgumentParser()
|
||||
args.add_argument('--step', default=6)
|
||||
args.add_argument('--step', default=5)
|
||||
args.add_argument('--features', default=6)
|
||||
args.add_argument('--size', default=9)
|
||||
args.add_argument('--latent_dim', default=4)
|
||||
args.add_argument('--model', default='Model')
|
||||
args.add_argument('--latent_dim', default=2)
|
||||
args.add_argument('--model', default='VAE_Model')
|
||||
args.add_argument('--refresh', type=strtobool, default=False)
|
||||
|
||||
|
||||
# ToDo: How to implement this better?
|
||||
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||
class Model(AutoEncoderLightningOverrides, LightningModule):
|
||||
class AE_Model(AutoEncoder_LO, LightningModule):
|
||||
|
||||
def __init__(self, parameters):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
@ -32,11 +34,23 @@ class Model(AutoEncoderLightningOverrides, LightningModule):
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(Model, self).__init__()
|
||||
super(AE_Model, self).__init__()
|
||||
self.network = AutoEncoder(self.latent_dim, self.features)
|
||||
|
||||
|
||||
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
class VAE_Model(VAE_LO, LightningModule):
|
||||
|
||||
def __init__(self, parameters):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(VAE_Model, self).__init__()
|
||||
self.network = VariationalAE(self.latent_dim, self.features)
|
||||
|
||||
|
||||
class AAE_Model(AdversarialAE_LO, LightningModule):
|
||||
|
||||
def __init__(self, parameters: Namespace):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
@ -44,13 +58,13 @@ class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(AdversarialModel, self).__init__()
|
||||
super(AAE_Model, self).__init__()
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = AdversarialAutoEncoder(self.latent_dim, self.features)
|
||||
self.network = AdversarialAE(self.latent_dim, self.features)
|
||||
pass
|
||||
|
||||
|
||||
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
||||
class SAAE_Model(SeparatingAAE_LO, LightningModule):
|
||||
|
||||
def __init__(self, parameters: Namespace):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
@ -58,9 +72,23 @@ class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, Ligh
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(SeparatingAdversarialModel, self).__init__()
|
||||
super(SAAE_Model, self).__init__()
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.features)
|
||||
self.network = SeperatingAAE(self.latent_dim, self.features)
|
||||
pass
|
||||
|
||||
|
||||
class SSAAE_Model(SeparatingAAE_LO, LightningModule):
|
||||
|
||||
def __init__(self, parameters: Namespace):
|
||||
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
|
||||
self.size = parameters.size
|
||||
self.latent_dim = parameters.latent_dim
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(SSAAE_Model, self).__init__()
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = SuperSeperatingAAE(self.latent_dim, self.features)
|
||||
pass
|
||||
|
||||
|
||||
@ -84,8 +112,13 @@ if __name__ == '__main__':
|
||||
period=4
|
||||
)
|
||||
|
||||
trainer = Trainer(experiment=exp, max_nb_epochs=250, gpus=[0],
|
||||
add_log_row_interval=1000, checkpoint_callback=checkpoint_callback)
|
||||
trainer = Trainer(experiment=exp,
|
||||
max_nb_epochs=250,
|
||||
gpus=[0],
|
||||
add_log_row_interval=1000,
|
||||
# checkpoint_callback=checkpoint_callback
|
||||
)
|
||||
|
||||
trainer.fit(model)
|
||||
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))
|
||||
|
||||
|
Reference in New Issue
Block a user