Done: First VIsualization
ToDo: Visualization for all classes, latent space setups
This commit is contained in:
@ -1,6 +1,9 @@
|
||||
from networks.auto_encoder import *
|
||||
import os
|
||||
import time
|
||||
from networks.variational_auto_encoder import *
|
||||
from networks.adverserial_auto_encoder import *
|
||||
from networks.seperating_adversarial_auto_encoder import *
|
||||
from networks.modules import LightningModule
|
||||
from torch.optim import Adam
|
||||
from torch.utils.data import DataLoader
|
||||
@ -9,7 +12,7 @@ from dataset import DataContainer
|
||||
|
||||
from torch.nn import BatchNorm1d
|
||||
from pytorch_lightning import Trainer
|
||||
|
||||
from test_tube import Experiment
|
||||
|
||||
# ToDo: How to implement this better?
|
||||
# other_classes = [AutoEncoder, AutoEncoderLightningOverrides]
|
||||
@ -30,6 +33,10 @@ class Model(VariationalAutoEncoderLightningOverrides, LightningModule):
|
||||
|
||||
class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.network.name
|
||||
|
||||
def __init__(self, dataParams: dict):
|
||||
super(AdversarialModel, self).__init__()
|
||||
self.dataParams = dataParams
|
||||
@ -48,13 +55,61 @@ class AdversarialModel(AdversarialAELightningOverrides, LightningModule):
|
||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||
|
||||
|
||||
class SeparatingAdversarialModel(SeparatingAdversarialAELightningOverrides, LightningModule):
|
||||
|
||||
def __init__(self, latent_dim, dataParams: dict):
|
||||
super(SeparatingAdversarialModel, self).__init__()
|
||||
self.latent_dim = latent_dim
|
||||
self.dataParams = dataParams
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = SeperatingAdversarialAutoEncoder(self.latent_dim, self.dataParams)
|
||||
pass
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
|
||||
, lr=0.02),
|
||||
Adam([*self.network.temporal_discriminator.parameters(), *self.network.temporal_encoder.parameters()]
|
||||
, lr=0.02),
|
||||
Adam([*self.network.temporal_encoder.parameters(),
|
||||
*self.network.spatial_encoder.parameters(),
|
||||
*self.network.decoder.parameters()]
|
||||
, lr=0.02)], []
|
||||
|
||||
@data_loader
|
||||
def tng_dataloader(self):
|
||||
return DataLoader(DataContainer('data', **self.dataParams), shuffle=True, batch_size=100)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
features = 6
|
||||
ae = AdversarialModel(
|
||||
dataParams=dict(refresh=False, size=5, step=5,
|
||||
features=features, transforms=[BatchNorm1d(features)]
|
||||
)
|
||||
latent_dim = 4
|
||||
model = SeparatingAdversarialModel(latent_dim=latent_dim, dataParams=dict(refresh=False, size=5, step=5,
|
||||
features=features, transforms=[BatchNorm1d(features)]
|
||||
)
|
||||
)
|
||||
|
||||
# PyTorch summarywriter with a few bells and whistles
|
||||
outpath = os.path.join(os.getcwd(), 'output', model.name, time.asctime().replace(' ', '_').replace(':', '-'))
|
||||
os.makedirs(outpath, exist_ok=True)
|
||||
exp = Experiment(save_dir=outpath)
|
||||
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
|
||||
checkpoint_callback = ModelCheckpoint(
|
||||
filepath=os.path.join(outpath, 'weights.ckpt'),
|
||||
save_best_only=True,
|
||||
verbose=True,
|
||||
monitor='val_loss',
|
||||
mode='min',
|
||||
|
||||
)
|
||||
|
||||
trainer = Trainer()
|
||||
trainer.fit(ae)
|
||||
trainer = Trainer(experiment=exp, checkpoint_callback=checkpoint_callback, max_nb_epochs=15) # gpus=[0...LoL]
|
||||
trainer.fit(model)
|
||||
trainer.save_checkpoint(os.path.join(outpath, 'weights.ckpt'))
|
||||
|
||||
# view tensorflow logs
|
||||
print(f'View tensorboard logs by running\ntensorboard --logdir {outpath}')
|
||||
print('and going to http://localhost:6006 on your browser')
|
||||
|
Reference in New Issue
Block a user