Done: First VIsualization
ToDo: Visualization for all classes, latent space setups
This commit is contained in:
@ -1,9 +1,24 @@
|
||||
import torch
|
||||
import pytorch_lightning as pl
|
||||
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU
|
||||
from torch.nn import Module, Linear, ReLU, Tanh, Sigmoid, Dropout, GRU, AvgPool2d
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
#######################
|
||||
# Abstract NN Class
|
||||
|
||||
class AbstractNeuralNetwork(Module):
|
||||
|
||||
@property
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self):
|
||||
super(AbstractNeuralNetwork, self).__init__()
|
||||
|
||||
def forward(self, batch):
|
||||
pass
|
||||
|
||||
|
||||
######################
|
||||
# Abstract Network class following the Lightning Syntax
|
||||
@ -102,6 +117,15 @@ class RNNOutputFilter(Module):
|
||||
return out if not self.only_last else out[:, -1, :]
|
||||
|
||||
|
||||
class AvgDimPool(Module):
|
||||
|
||||
def __init__(self):
|
||||
super(AvgDimPool, self).__init__()
|
||||
|
||||
def forward(self, x):
|
||||
return x.mean(-2)
|
||||
|
||||
|
||||
#######################
|
||||
# Network Modules
|
||||
# Generators, Decoders, Encoders, Discriminators
|
||||
@ -112,8 +136,8 @@ class Discriminator(Module):
|
||||
self.dataParams = dataParams
|
||||
self.latent_dim = latent_dim
|
||||
self.l1 = Linear(self.latent_dim, self.dataParams['features'] * 10)
|
||||
self.l2 = Linear(self.dataParams['features']*10, self.dataParams['features'] * 20)
|
||||
self.lout = Linear(self.dataParams['features']*20, 1)
|
||||
self.l2 = Linear(self.dataParams['features'] * 10, self.dataParams['features'] * 20)
|
||||
self.lout = Linear(self.dataParams['features'] * 20, 1)
|
||||
self.dropout = Dropout(dropout)
|
||||
self.activation = activation()
|
||||
self.sigmoid = Sigmoid()
|
||||
@ -149,6 +173,7 @@ class EncoderLinearStack(Module):
|
||||
|
||||
def __init__(self):
|
||||
super(EncoderLinearStack, self).__init__()
|
||||
# FixMe: Get Hardcoded shit out of here
|
||||
self.l1 = Linear(6, 100, bias=True)
|
||||
self.l2 = Linear(100, 10, bias=True)
|
||||
self.activation = ReLU()
|
||||
@ -188,6 +213,31 @@ class Encoder(Module):
|
||||
return tensor
|
||||
|
||||
|
||||
class PoolingEncoder(Module):
|
||||
|
||||
def __init__(self, lat_dim, variational=False):
|
||||
self.lat_dim = lat_dim
|
||||
self.variational = variational
|
||||
|
||||
super(PoolingEncoder, self).__init__()
|
||||
self.p = AvgDimPool()
|
||||
self.l = EncoderLinearStack()
|
||||
if variational:
|
||||
self.mu = Linear(10, self.lat_dim)
|
||||
self.logvar = Linear(10, self.lat_dim)
|
||||
else:
|
||||
self.lat_dim_layer = Linear(10, self.lat_dim)
|
||||
|
||||
def forward(self, x):
|
||||
tensor = self.p(x)
|
||||
tensor = self.l(tensor)
|
||||
if self.variational:
|
||||
tensor = self.mu(tensor), self.logvar(tensor)
|
||||
else:
|
||||
tensor = self.lat_dim_layer(tensor)
|
||||
return tensor
|
||||
|
||||
|
||||
class Decoder(Module):
|
||||
|
||||
def __init__(self, latent_dim, *args, variational=False):
|
||||
|
Reference in New Issue
Block a user