transition
This commit is contained in:
parent
4c489237d7
commit
578727d043
@ -5,7 +5,6 @@ from distutils.util import strtobool
|
||||
import os
|
||||
import ast
|
||||
from abc import ABC, abstractmethod
|
||||
from torch.nn.modules import BatchNorm1d
|
||||
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
@ -108,11 +107,6 @@ class AbstractDataset(ConcatDataset, ABC):
|
||||
|
||||
class DataContainer(AbstractDataset):
|
||||
|
||||
@staticmethod
|
||||
def calculate_model_shapes(size, step, **kwargs):
|
||||
|
||||
return
|
||||
|
||||
@property
|
||||
def raw_filenames(self):
|
||||
return [f'{x}_trajec.csv' for x in self.maps]
|
||||
@ -209,7 +203,7 @@ class Trajectories(Dataset):
|
||||
|
||||
def get_both_by_key(self, item):
|
||||
data = self.data[item:item + self.size * self.step or None:self.step]
|
||||
return data[0]
|
||||
return data
|
||||
|
||||
def __len__(self):
|
||||
total_len = self.data.size()[0]
|
||||
|
@ -1,6 +0,0 @@
|
||||
#ToDo: We need a metric that analysis sequences of coordinates of arbitrary length and clusters them based
|
||||
# on their embedded type of mevement
|
||||
|
||||
# ToDo: we ne a function, that compares the clustering outcome of our movement analysis with the AE output.
|
||||
|
||||
# Do the variants of AE really adjust their latent space regarding the embedded moveement type?
|
@ -11,9 +11,10 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
class AdversarialAE(AutoEncoder):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
def __init__(self, *args, train_on_predictions=False, use_norm=False, **kwargs):
|
||||
super(AdversarialAE, self).__init__(*args, **kwargs)
|
||||
self.discriminator = Discriminator(self.latent_dim, self.features)
|
||||
self.discriminator = Discriminator(self.latent_dim, self.features, use_norm=use_norm)
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def forward(self, batch):
|
||||
# Encoder
|
||||
@ -25,13 +26,6 @@ class AdversarialAE(AutoEncoder):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AdversarialAE_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(AdversarialAE_LO, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def training_step(self, batch, _, optimizer_i):
|
||||
x, y = batch
|
||||
z, x_hat = self.forward(x)
|
||||
@ -66,8 +60,7 @@ class AdversarialAE_LO(LightningModuleOverrides):
|
||||
else:
|
||||
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
#FIXME: This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam(self.network.discriminator.parameters(), lr=0.02),
|
||||
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02), ],\
|
||||
|
@ -27,12 +27,6 @@ class AE_WithAttention(AbstractNeuralNetwork, ABC):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AE_WithAttention_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self):
|
||||
super(AE_WithAttention_LO, self).__init__()
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
# ToDo: We need a new loss function, fullfilling all attention needs
|
||||
# z, x_hat
|
||||
|
@ -9,9 +9,11 @@ from torch import Tensor
|
||||
# Basic AE-Implementation
|
||||
class AutoEncoder(AbstractNeuralNetwork, ABC):
|
||||
|
||||
def __init__(self, latent_dim: int=0, features: int = 0, use_norm=True, **kwargs):
|
||||
def __init__(self, latent_dim: int=0, features: int = 0, use_norm=True,
|
||||
train_on_predictions=False, **kwargs):
|
||||
assert latent_dim and features
|
||||
super(AutoEncoder, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
self.latent_dim = latent_dim
|
||||
self.features = features
|
||||
self.encoder = Encoder(self.latent_dim, use_norm=use_norm)
|
||||
@ -27,13 +29,6 @@ class AutoEncoder(AbstractNeuralNetwork, ABC):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AutoEncoder_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(AutoEncoder_LO, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def training_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
# z, x_hat
|
||||
|
@ -5,9 +5,7 @@ from functools import reduce
|
||||
import torch
|
||||
from torch import randn
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import data_loader
|
||||
from torch.nn import Module, Linear, ReLU, Sigmoid, Dropout, GRU, Tanh
|
||||
from torchvision.transforms import Normalize
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
@ -27,21 +25,12 @@ class LightningModuleOverrides:
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def forward(self, x):
|
||||
return self.network.forward(x)
|
||||
|
||||
@data_loader
|
||||
@pl.data_loader
|
||||
def train_dataloader(self):
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer(os.path.join('data', 'training'), self.size, self.step),
|
||||
shuffle=True, batch_size=10000, num_workers=num_workers)
|
||||
"""
|
||||
@data_loader
|
||||
def val_dataloader(self):
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer(os.path.join('data', 'validation'), self.size, self.step),
|
||||
shuffle=True, batch_size=100, num_workers=num_workers)
|
||||
"""
|
||||
|
||||
|
||||
|
||||
class AbstractNeuralNetwork(Module):
|
||||
@ -56,53 +45,6 @@ class AbstractNeuralNetwork(Module):
|
||||
def forward(self, batch):
|
||||
pass
|
||||
|
||||
|
||||
######################
|
||||
# Abstract Network class following the Lightning Syntax
|
||||
class LightningModule(pl.LightningModule, ABC):
|
||||
|
||||
def __init__(self):
|
||||
super(LightningModule, self).__init__()
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def training_step(self, batch, batch_nb):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def configure_optimizers(self):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
@pl.data_loader
|
||||
def train_dataloader(self):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
"""
|
||||
def validation_step(self, batch, batch_nb):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
def validation_end(self, outputs):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
@pl.data_loader
|
||||
def val_dataloader(self):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
@pl.data_loader
|
||||
def test_dataloader(self):
|
||||
# OPTIONAL
|
||||
pass
|
||||
"""
|
||||
|
||||
#######################
|
||||
# Utility Modules
|
||||
class TimeDistributed(Module):
|
||||
@ -167,12 +109,14 @@ class AvgDimPool(Module):
|
||||
# Generators, Decoders, Encoders, Discriminators
|
||||
class Discriminator(Module):
|
||||
|
||||
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU):
|
||||
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU, use_norm=False):
|
||||
super(Discriminator, self).__init__()
|
||||
self.features = features
|
||||
self.latent_dim = latent_dim
|
||||
self.l1 = Linear(self.latent_dim, self.features * 10)
|
||||
self.norm1 = torch.nn.BatchNorm1d(self.features * 10) if use_norm else False
|
||||
self.l2 = Linear(self.features * 10, self.features * 20)
|
||||
self.norm2 = torch.nn.BatchNorm1d(self.features * 20) if use_norm else False
|
||||
self.lout = Linear(self.features * 20, 1)
|
||||
self.dropout = Dropout(dropout)
|
||||
self.activation = activation()
|
||||
@ -180,9 +124,15 @@ class Discriminator(Module):
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
tensor = self.l1(x)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.dropout(tensor)
|
||||
if self.norm1:
|
||||
tensor = self.norm1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.l2(tensor)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.dropout(tensor)
|
||||
if self.norm2:
|
||||
tensor = self.norm2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.lout(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
||||
@ -296,13 +246,13 @@ class AttentionEncoder(Module):
|
||||
|
||||
class PoolingEncoder(Module):
|
||||
|
||||
def __init__(self, lat_dim, variational=False):
|
||||
def __init__(self, lat_dim, variational=False, use_norm=True):
|
||||
self.lat_dim = lat_dim
|
||||
self.variational = variational
|
||||
|
||||
super(PoolingEncoder, self).__init__()
|
||||
self.p = AvgDimPool()
|
||||
self.l = EncoderLinearStack()
|
||||
self.l = EncoderLinearStack(use_norm=use_norm)
|
||||
if variational:
|
||||
self.mu = Linear(self.l.shape, self.lat_dim)
|
||||
self.logvar = Linear(self.l.shape, self.lat_dim)
|
||||
|
@ -6,12 +6,13 @@ import torch
|
||||
|
||||
class SeperatingAAE(Module):
|
||||
|
||||
def __init__(self, latent_dim, features, use_norm=True):
|
||||
def __init__(self, latent_dim, features, train_on_predictions=False, use_norm=True):
|
||||
super(SeperatingAAE, self).__init__()
|
||||
|
||||
self.latent_dim = latent_dim
|
||||
self.features = features
|
||||
self.spatial_encoder = PoolingEncoder(self.latent_dim)
|
||||
self.train_on_predictions = train_on_predictions
|
||||
self.spatial_encoder = PoolingEncoder(self.latent_dim, use_norm=use_norm)
|
||||
self.temporal_encoder = Encoder(self.latent_dim, use_dense=False, use_norm=use_norm)
|
||||
self.decoder = Decoder(self.latent_dim * 2, self.features, use_norm=use_norm)
|
||||
self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
|
||||
@ -28,13 +29,6 @@ class SeperatingAAE(Module):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z_spatial, z_temporal, x_hat
|
||||
|
||||
|
||||
class SeparatingAAE_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(SeparatingAAE_LO, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def training_step(self, batch, _, optimizer_i):
|
||||
x, y = batch
|
||||
spatial_latent_fake, temporal_latent_fake, x_hat = self.network.forward(x)
|
||||
@ -92,7 +86,7 @@ class SeparatingAAE_LO(LightningModuleOverrides):
|
||||
else:
|
||||
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
#FixMe: This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
|
||||
, lr=0.02),
|
||||
|
@ -12,7 +12,7 @@ class VariationalAE(AbstractNeuralNetwork, ABC):
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, latent_dim=0, features=0, use_norm=True, **kwargs):
|
||||
def __init__(self, latent_dim=0, features=0, use_norm=True, train_on_predictions=False, **kwargs):
|
||||
assert latent_dim and features
|
||||
super(VariationalAE, self).__init__()
|
||||
self.features = features
|
||||
@ -34,13 +34,6 @@ class VariationalAE(AbstractNeuralNetwork, ABC):
|
||||
x_hat = self.decoder(repeat(z))
|
||||
return mu, logvar, x_hat
|
||||
|
||||
|
||||
class VAE_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(VAE_LO, self).__init__()
|
||||
self.train_on_predictions=train_on_predictions
|
||||
|
||||
def training_step(self, batch, _):
|
||||
x, y = batch
|
||||
mu, logvar, x_hat = self.forward(x)
|
||||
|
Binary file not shown.
Binary file not shown.
Binary file not shown.
@ -1 +0,0 @@
|
||||
{"name": "default", "version": 0, "tags_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\AE_Model\\Sun_Sep_29_12-35-27_2019\\default\\version_0/meta_tags.csv", "metrics_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\AE_Model\\Sun_Sep_29_12-35-27_2019\\default\\version_0/metrics.csv", "autosave": false, "description": null, "created_at": "2019-09-29 10:35:27.965484", "exp_hash": "default_v0"}
|
@ -1,8 +0,0 @@
|
||||
key,value
|
||||
step,5
|
||||
features,6
|
||||
size,9
|
||||
latent_dim,2
|
||||
model,AE_Model
|
||||
refresh,False
|
||||
future_predictions,False
|
|
@ -1,2 +0,0 @@
|
||||
loss,epoch,created_at
|
||||
1.454,0.0,2019-09-29 10:41:14.039965
|
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
{"name": "default", "version": 0, "tags_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\AE_Model\\Sun_Sep_29_12-44-13_2019\\default\\version_0/meta_tags.csv", "metrics_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\AE_Model\\Sun_Sep_29_12-44-13_2019\\default\\version_0/metrics.csv", "autosave": false, "description": null, "created_at": "2019-09-29 10:44:13.614075", "exp_hash": "default_v0"}
|
@ -1,8 +0,0 @@
|
||||
key,value
|
||||
step,5
|
||||
features,6
|
||||
size,9
|
||||
latent_dim,2
|
||||
model,AE_Model
|
||||
refresh,False
|
||||
future_predictions,True
|
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
{"name": "default", "version": 0, "tags_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\AE_Model\\Sun_Sep_29_12-44-29_2019\\default\\version_0/meta_tags.csv", "metrics_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\AE_Model\\Sun_Sep_29_12-44-29_2019\\default\\version_0/metrics.csv", "autosave": false, "description": null, "created_at": "2019-09-29 10:44:29.534657", "exp_hash": "default_v0"}
|
@ -1,8 +0,0 @@
|
||||
key,value
|
||||
step,5
|
||||
features,6
|
||||
size,9
|
||||
latent_dim,2
|
||||
model,AE_Model
|
||||
refresh,False
|
||||
future_predictions,True
|
|
@ -1,3 +0,0 @@
|
||||
loss,epoch,created_at
|
||||
1.372,0.0,2019-09-29 10:44:34.492200
|
||||
0.267,1.0,2019-09-29 10:54:22.294891
|
|
Binary file not shown.
@ -1 +0,0 @@
|
||||
{"name": "default", "version": 0, "tags_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\SAAE_Model\\Sun_Sep_29_12-54-18_2019\\default\\version_0/meta_tags.csv", "metrics_path": "C:\\Users\\steff\\Google Drive\\LMU\\Research\\ae_toolbox_torch\\output\\SAAE_Model\\Sun_Sep_29_12-54-18_2019\\default\\version_0/metrics.csv", "autosave": false, "description": null, "created_at": "2019-09-29 10:54:18.863108", "exp_hash": "default_v0"}
|
@ -1,8 +0,0 @@
|
||||
key,value
|
||||
step,5
|
||||
features,6
|
||||
size,9
|
||||
latent_dim,2
|
||||
model,SAAE_Model
|
||||
refresh,False
|
||||
future_predictions,True
|
|
@ -1,48 +0,0 @@
|
||||
loss,epoch,created_at
|
||||
0.471,0.0,2019-09-29 10:54:25.127533
|
||||
0.076,1.0,2019-09-29 11:04:46.930249
|
||||
0.069,2.0,2019-09-29 11:14:02.826272
|
||||
0.089,3.0,2019-09-29 11:23:11.776641
|
||||
0.068,4.0,2019-09-29 11:32:19.540023
|
||||
0.066,5.0,2019-09-29 11:41:27.129607
|
||||
0.067,6.0,2019-09-29 11:50:33.679401
|
||||
0.071,7.0,2019-09-29 11:59:38.747566
|
||||
0.068,8.0,2019-09-29 12:08:46.713434
|
||||
0.067,9.0,2019-09-29 12:17:55.462982
|
||||
0.07,10.0,2019-09-29 12:27:03.690029
|
||||
0.066,11.0,2019-09-29 12:36:10.274328
|
||||
0.066,12.0,2019-09-29 12:45:17.844777
|
||||
0.064,13.0,2019-09-29 12:54:25.440055
|
||||
0.064,14.0,2019-09-29 13:03:32.662178
|
||||
0.063,15.0,2019-09-29 13:12:39.334202
|
||||
0.063,16.0,2019-09-29 13:21:45.282941
|
||||
0.063,17.0,2019-09-29 13:30:50.702369
|
||||
0.062,18.0,2019-09-29 13:39:56.479320
|
||||
0.062,19.0,2019-09-29 13:49:03.009732
|
||||
0.062,20.0,2019-09-29 13:58:09.206604
|
||||
0.062,21.0,2019-09-29 14:07:16.674273
|
||||
0.062,22.0,2019-09-29 14:16:32.081830
|
||||
0.061,23.0,2019-09-29 14:25:47.816996
|
||||
0.061,24.0,2019-09-29 14:34:59.053729
|
||||
0.061,25.0,2019-09-29 14:44:12.326646
|
||||
0.061,26.0,2019-09-29 14:53:20.545392
|
||||
0.061,27.0,2019-09-29 15:02:29.076439
|
||||
0.061,28.0,2019-09-29 15:11:40.214715
|
||||
0.061,29.0,2019-09-29 15:20:47.708415
|
||||
0.061,30.0,2019-09-29 15:29:55.151460
|
||||
0.061,31.0,2019-09-29 15:39:02.450643
|
||||
0.061,32.0,2019-09-29 15:48:13.678387
|
||||
0.061,33.0,2019-09-29 15:57:22.619685
|
||||
0.061,34.0,2019-09-29 16:06:32.276767
|
||||
0.061,35.0,2019-09-29 16:15:39.175331
|
||||
0.061,36.0,2019-09-29 16:24:48.090009
|
||||
0.061,37.0,2019-09-29 16:33:53.686359
|
||||
0.061,38.0,2019-09-29 16:43:01.209447
|
||||
0.061,39.0,2019-09-29 16:52:09.086088
|
||||
0.061,40.0,2019-09-29 17:01:17.997290
|
||||
0.06,41.0,2019-09-29 17:10:24.687865
|
||||
0.061,42.0,2019-09-29 17:19:33.252531
|
||||
0.061,43.0,2019-09-29 17:28:40.294962
|
||||
0.06,44.0,2019-09-29 17:37:50.408505
|
||||
0.06,45.0,2019-09-29 17:46:57.046547
|
||||
0.06,46.0,2019-09-29 17:56:05.325744
|
|
Binary file not shown.
@ -1,4 +1,5 @@
|
||||
from torch.distributions import Normal
|
||||
from torch.cuda import is_available
|
||||
|
||||
import time
|
||||
import os
|
||||
@ -22,9 +23,10 @@ args.add_argument('--step', default=5)
|
||||
args.add_argument('--features', default=6)
|
||||
args.add_argument('--size', default=9)
|
||||
args.add_argument('--latent_dim', default=2)
|
||||
args.add_argument('--model', default='SAAE_Model')
|
||||
args.add_argument('--model', default='AE_Model')
|
||||
args.add_argument('--refresh', type=strtobool, default=False)
|
||||
args.add_argument('--future_predictions', type=strtobool, default=True)
|
||||
args.add_argument('--future_predictions', type=strtobool, default=False)
|
||||
args.add_argument('--use_norm', type=strtobool, default=True)
|
||||
|
||||
|
||||
class AE_Model(AutoEncoder_LO, LightningModule):
|
||||
@ -36,7 +38,7 @@ class AE_Model(AutoEncoder_LO, LightningModule):
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(AE_Model, self).__init__(train_on_predictions=parameters.future_predictions)
|
||||
self.network = AutoEncoder(self.latent_dim, self.features)
|
||||
self.network = AutoEncoder(self.latent_dim, self.features, use_norm=parameters.use_norm)
|
||||
|
||||
|
||||
class VAE_Model(VAE_LO, LightningModule):
|
||||
@ -48,7 +50,7 @@ class VAE_Model(VAE_LO, LightningModule):
|
||||
self.features = parameters.features
|
||||
self.step = parameters.step
|
||||
super(VAE_Model, self).__init__(train_on_predictions=parameters.future_predictions)
|
||||
self.network = VariationalAE(self.latent_dim, self.features)
|
||||
self.network = VariationalAE(self.latent_dim, self.features, use_norm=parameters.use_norm)
|
||||
|
||||
|
||||
class AAE_Model(AdversarialAE_LO, LightningModule):
|
||||
@ -61,7 +63,7 @@ class AAE_Model(AdversarialAE_LO, LightningModule):
|
||||
self.step = parameters.step
|
||||
super(AAE_Model, self).__init__(train_on_predictions=parameters.future_predictions)
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = AdversarialAE(self.latent_dim, self.features)
|
||||
self.network = AdversarialAE(self.latent_dim, self.features, use_norm=parameters.use_norm)
|
||||
pass
|
||||
|
||||
|
||||
@ -75,7 +77,7 @@ class SAAE_Model(SeparatingAAE_LO, LightningModule):
|
||||
self.step = parameters.step
|
||||
super(SAAE_Model, self).__init__(train_on_predictions=parameters.future_predictions)
|
||||
self.normal = Normal(0, 1)
|
||||
self.network = SeperatingAAE(self.latent_dim, self.features)
|
||||
self.network = SeperatingAAE(self.latent_dim, self.features, use_norm=parameters.use_norm)
|
||||
pass
|
||||
|
||||
|
||||
@ -93,17 +95,17 @@ if __name__ == '__main__':
|
||||
from pytorch_lightning.callbacks import ModelCheckpoint
|
||||
|
||||
checkpoint_callback = ModelCheckpoint(
|
||||
filepath=os.path.join(outpath, 'weights.ckpt'),
|
||||
filepath=os.path.join(outpath, 'weights'),
|
||||
save_best_only=False,
|
||||
verbose=True,
|
||||
period=4
|
||||
)
|
||||
|
||||
trainer = Trainer(experiment=exp,
|
||||
max_nb_epochs=250,
|
||||
gpus=[0],
|
||||
max_nb_epochs=60,
|
||||
gpus=[0] if is_available() else None,
|
||||
row_log_interval=1000,
|
||||
# checkpoint_callback=checkpoint_callback
|
||||
checkpoint_callback=checkpoint_callback
|
||||
)
|
||||
|
||||
trainer.fit(model)
|
||||
|
@ -1,50 +1,26 @@
|
||||
from argparse import ArgumentParser
|
||||
import os
|
||||
|
||||
from torch import device
|
||||
from torch.cuda import is_available
|
||||
|
||||
from dataset import DataContainer
|
||||
from viz.utils import MotionAnalyser, Printer, MapContainer, search_for_weights
|
||||
import torch
|
||||
from run_models import SAAE_Model, AAE_Model, VAE_Model, AE_Model
|
||||
from viz.utils import Printer, MapContainer
|
||||
|
||||
available_device = device('cuda' if is_available() else 'cpu')
|
||||
|
||||
arguments = ArgumentParser()
|
||||
arguments.add_argument('--data', default='output')
|
||||
|
||||
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
|
||||
def load_and_viz(path_like_element):
|
||||
# Define Loop to search for models and folder with visualizations
|
||||
splitpath = path_like_element.split(os.sep)
|
||||
base_dir = os.path.join(*splitpath[:4])
|
||||
model = globals()[splitpath[2]]
|
||||
print(f'... loading model named: "{model.name}" from timestamp: {splitpath[3]}')
|
||||
pretrained_model = model.load_from_metrics(
|
||||
weights_path=path_like_element,
|
||||
tags_csv=os.path.join(base_dir, 'default', 'version_0', 'meta_tags.csv'),
|
||||
on_gpu=True if torch.cuda.is_available() else False,
|
||||
# map_location=None
|
||||
)
|
||||
|
||||
# Init model and freeze its weights ( for faster inference)
|
||||
pretrained_model = pretrained_model.to(device)
|
||||
pretrained_model.eval()
|
||||
pretrained_model.freeze()
|
||||
|
||||
dataIndex = 0
|
||||
|
||||
datasets = DataContainer(os.path.join(os.pardir, 'data', 'validation'), 9, 6).to(device)
|
||||
dataset = datasets.datasets[dataIndex]
|
||||
# ToDO: use dataloader for iteration instead! - dataloader = DataLoader(dataset, )
|
||||
|
||||
maps = MapContainer(os.path.join(os.pardir, 'data', 'validation'))
|
||||
base_map = maps.datasets[dataIndex]
|
||||
|
||||
p = Printer(pretrained_model)
|
||||
p.print_trajec_on_basemap(dataset, base_map, save=os.path.join(base_dir, f'{base_map.name}_movement.png'),
|
||||
color_by_movement=True)
|
||||
return True
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
args = arguments.parse_args()
|
||||
search_for_weights(load_and_viz, args.data, file_type='movement')
|
||||
|
||||
maps = MapContainer(os.path.join(os.pardir, 'data', 'validation'))
|
||||
base_map = maps.datasets[0]
|
||||
|
||||
datasets = DataContainer(os.path.join(os.pardir, 'data', 'validation'), 9, 6).to(available_device)
|
||||
dataset = datasets.datasets[0]
|
||||
|
||||
p = Printer(None)
|
||||
p.print_trajec_on_basemap(dataset, base_map, save=os.path.join(f'{base_map.name}_movement.png'),
|
||||
color_by_movement=True, n=20, clustering='fastdtw', show=True)
|
BIN
viz/tum_map_movement.png
Normal file
BIN
viz/tum_map_movement.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 97 KiB |
160
viz/utils.py
160
viz/utils.py
@ -1,9 +1,8 @@
|
||||
from typing import Union
|
||||
from functools import reduce
|
||||
|
||||
from statistics import stdev
|
||||
|
||||
from sklearn.cluster import Birch, KMeans, DBSCAN
|
||||
from sklearn.cluster import Birch, KMeans
|
||||
from sklearn.manifold import TSNE
|
||||
from sklearn.decomposition import PCA
|
||||
|
||||
@ -16,7 +15,7 @@ from matplotlib.collections import LineCollection, PatchCollection
|
||||
import matplotlib.colors as mcolors
|
||||
import matplotlib.cm as cmaps
|
||||
|
||||
from math import pi
|
||||
from math import pi, cos, sin
|
||||
|
||||
|
||||
def search_for_weights(func, folder, file_type='latent_space'):
|
||||
@ -24,10 +23,13 @@ def search_for_weights(func, folder, file_type='latent_space'):
|
||||
if len(os.path.split(folder)) >= 50:
|
||||
raise FileNotFoundError(f'The folder "{folder}" could not be found')
|
||||
folder = os.path.join(os.pardir, folder)
|
||||
|
||||
if any([file_type in x.name for x in os.scandir(folder)]):
|
||||
return
|
||||
elif folder == 'weights' and os.path.isdir(folder):
|
||||
return
|
||||
|
||||
if any(['.ckpt' in element.name and element.is_dir() for element in os.scandir(folder)]):
|
||||
if any(['weights.ckpt' in element.name and element.is_dir() for element in os.scandir(folder)]) and False:
|
||||
_, _, filenames = next(os.walk(os.path.join(folder, 'weights.ckpt')))
|
||||
filenames.sort(key=lambda f: int(''.join(filter(str.isdigit, f))))
|
||||
func(os.path.join(folder, 'weights.ckpt', filenames[-1]))
|
||||
@ -37,7 +39,7 @@ def search_for_weights(func, folder, file_type='latent_space'):
|
||||
if os.path.exists(element):
|
||||
if element.is_dir():
|
||||
search_for_weights(func, element.path, file_type=file_type)
|
||||
elif element.is_file() and element.name.endswith('.ckpt'):
|
||||
elif element.is_file() and element.name.endswith('weights.ckpt'):
|
||||
func(element.path)
|
||||
else:
|
||||
continue
|
||||
@ -47,16 +49,15 @@ class Printer(object):
|
||||
|
||||
def __init__(self, model: AbstractNeuralNetwork, ax=None):
|
||||
self.norm = mcolors.Normalize(vmin=0, vmax=1)
|
||||
self.colormap = cmaps.gist_rainbow
|
||||
self.colormap = cmaps.tab20
|
||||
self.network = model
|
||||
self.fig = plt.figure(dpi=300)
|
||||
self.ax = ax if ax else plt.subplot(1, 1, 1)
|
||||
pass
|
||||
|
||||
def colorize(self, x, min_val: Union[float, None] = None, max_val: Union[float, None] = None,
|
||||
colormap=cmaps.rainbow, **kwargs):
|
||||
def colorize(self, x, min_val: Union[float, None] = None, max_val: Union[float, None] = None, **kwargs):
|
||||
norm = mcolors.Normalize(vmin=min_val, vmax=max_val)
|
||||
colored = colormap(norm(x))
|
||||
colored = self.colormap(norm(x))
|
||||
return colored
|
||||
|
||||
@staticmethod
|
||||
@ -79,20 +80,26 @@ class Printer(object):
|
||||
clusterer.init = np.asarray(centers)
|
||||
else:
|
||||
# clusterer = Birch(n_clusters=None)
|
||||
clusterer = Birch()
|
||||
clusterer = KMeans(3)
|
||||
|
||||
labels = clusterer.fit_predict(data)
|
||||
print('Birch Clustering Sucessfull')
|
||||
return labels
|
||||
|
||||
def print_possible_latent_spaces(self, data: Trajectories, n: Union[int, str] = 1000, **kwargs):
|
||||
predictions, _ = self._gather_predictions(data, n)
|
||||
def print_possible_latent_spaces(self, data: Trajectories, n: Union[int, str] = 1000,
|
||||
cluster_by_motion=True, **kwargs):
|
||||
predictions, motion_sequence = self._gather_predictions(data, n)
|
||||
if len(predictions) >= 2:
|
||||
predictions += (torch.cat(predictions, dim=-1), )
|
||||
|
||||
labels = self.cluster_data(predictions[-1])
|
||||
if cluster_by_motion:
|
||||
motion_analyzer = MotionAnalyser()
|
||||
labels = motion_analyzer.cluster_motion(motion_sequence)
|
||||
else:
|
||||
labels = self.cluster_data(predictions[-1])
|
||||
|
||||
for idx, prediction in enumerate(predictions):
|
||||
self.print_latent_space(prediction, labels, running_index=idx, **kwargs)
|
||||
self.print_latent_space(prediction, labels.squeeze(), running_index=idx, **kwargs)
|
||||
|
||||
def print_latent_space(self, prediction, labels, running_index=0, save=None):
|
||||
|
||||
@ -179,12 +186,13 @@ class Printer(object):
|
||||
print("Gathering Predictions")
|
||||
|
||||
n = n if isinstance(n, int) and n else len(data) - (data.size * data.step)
|
||||
idxs = np.random.choice(np.arange(len(data) - data.step * data.size), n, replace=False)
|
||||
idxs = np.random.choice(np.arange(len(data)), n, replace=True)
|
||||
complete_data = torch.stack([data.get_both_by_key(idx) for idx in idxs], dim=0)
|
||||
segment_coords, trajectories = complete_data[:, :, :2], complete_data[:, :, 2:]
|
||||
if color_by_movement:
|
||||
motion_analyser = MotionAnalyser()
|
||||
predictions = (motion_analyser.cluster_motion(segment_coords), )
|
||||
predictions = (motion_analyser.cluster_motion(segment_coords,
|
||||
clustering=kwargs.get('clustering', 'kmeans')), )
|
||||
|
||||
else:
|
||||
with torch.no_grad():
|
||||
@ -193,7 +201,7 @@ class Printer(object):
|
||||
return predictions, segment_coords
|
||||
|
||||
@staticmethod
|
||||
def colorize_as_hsv(self, x, min_val: Union[float, None] = None, max_val: Union[float, None] = None,
|
||||
def colorize_as_hsv(x, min_val: Union[float, None] = None, max_val: Union[float, None] = None,
|
||||
colormap=cmaps.rainbow, **kwargs):
|
||||
norm = mcolors.Normalize(vmin=min_val, vmax=max_val)
|
||||
colored = colormap(norm(x))
|
||||
@ -248,11 +256,12 @@ class Printer(object):
|
||||
patches = [Polygon(base_map[i], True, color='black') for i in range(len(base_map))]
|
||||
return PatchCollection(patches, color='black')
|
||||
|
||||
def print_trajec_on_basemap(self, data, base_map: Map, save=False, color_by_movement=False, **kwargs):
|
||||
def print_trajec_on_basemap(self, data, base_map: Map, save=False, show=False, color_by_movement=False, **kwargs):
|
||||
"""
|
||||
|
||||
:rtype: object
|
||||
"""
|
||||
|
||||
prediction_segments = self._gather_predictions(data, color_by_movement=color_by_movement, **kwargs)
|
||||
trajectory_shapes = self._build_trajectory_shapes(*prediction_segments, **kwargs)
|
||||
map_shapes = self._build_map_shapes(base_map)
|
||||
@ -266,7 +275,8 @@ class Printer(object):
|
||||
self.save(save)
|
||||
else:
|
||||
self.save(base_map.name)
|
||||
pass
|
||||
if show:
|
||||
self.show()
|
||||
|
||||
@staticmethod
|
||||
def show():
|
||||
@ -284,15 +294,25 @@ class MotionAnalyser(object):
|
||||
pass
|
||||
|
||||
def _sequential_pairwise_map(self, func, xy_sequence, on_deltas=False):
|
||||
zipped_list = [x for x in zip(xy_sequence[:-1], xy_sequence[1:])]
|
||||
|
||||
|
||||
if on_deltas:
|
||||
zipped_list = [x for x in zip(xy_sequence[:-1], xy_sequence[1:])]
|
||||
zipped_list = [self.delta(*movement) for movement in zipped_list]
|
||||
else:
|
||||
pass
|
||||
zipped_list = xy_sequence
|
||||
|
||||
return [func(*xy) for xy in zipped_list]
|
||||
|
||||
@staticmethod
|
||||
def _rotatePoint(point, center, angle, is_rad=True):
|
||||
|
||||
angle = (angle) * (pi / 180) if not is_rad else angle # Convert to radians if
|
||||
rotatedX = cos(angle) * (point[0] - center[0]) - sin(angle) * (point[1] - center[1]) + center[0]
|
||||
rotatedY = sin(angle) * (point[0] - center[0]) + cos(angle) * (point[1] - center[1]) + center[1]
|
||||
|
||||
return rotatedX, rotatedY
|
||||
|
||||
@staticmethod
|
||||
def delta(x1y1, x2y2):
|
||||
x1, y1 = x1y1
|
||||
@ -306,10 +326,16 @@ class MotionAnalyser(object):
|
||||
return r
|
||||
|
||||
@staticmethod
|
||||
def get_theta(deltax, deltay, rad=False):
|
||||
def get_theta(deltax, deltay, as_radians=True):
|
||||
# https://mathinsight.org/polar_coordinates
|
||||
try:
|
||||
deltax = torch.as_tensor(deltax)
|
||||
deltay = torch.as_tensor(deltay)
|
||||
except:
|
||||
pass
|
||||
|
||||
theta = torch.atan2(deltay, deltax)
|
||||
return theta if rad else theta * 180 / pi
|
||||
return theta if as_radians else theta * 180 / pi
|
||||
|
||||
def get_theta_for_sequence(self, xy_sequence):
|
||||
ts = self._sequential_pairwise_map(self.get_theta, xy_sequence, on_deltas=True)
|
||||
@ -319,38 +345,90 @@ class MotionAnalyser(object):
|
||||
rs = self._sequential_pairwise_map(self.get_r, xy_sequence, on_deltas=True)
|
||||
return rs
|
||||
|
||||
def move_to_zero(self, xy_sequence):
|
||||
old_origin = xy_sequence[0]
|
||||
return xy_sequence - old_origin
|
||||
|
||||
def get_unique_seq_identifier(self, xy_sequence):
|
||||
xy_sequence = xy_sequence.cpu()
|
||||
|
||||
# Move all points so that the first point is always (0, 0)
|
||||
# moved_sequence = self.move_to_zero(xy_sequence)
|
||||
moved_sequence = xy_sequence
|
||||
|
||||
# Rotate, so that x is zero for last point
|
||||
angle = self.get_theta(*self.delta(moved_sequence[0], moved_sequence[1]))
|
||||
rotated_sequence = torch.as_tensor([self._rotatePoint(point, moved_sequence[0], -angle)
|
||||
for point in moved_sequence[1:]])
|
||||
rotated_sequence = torch.cat((moved_sequence[0].unsqueeze(0), rotated_sequence))
|
||||
# rotated_sequence = moved_sequence
|
||||
std, mean = torch.std_mean(rotated_sequence)
|
||||
rotated_sequence = (rotated_sequence - mean) / std
|
||||
|
||||
def centroid_for(arr):
|
||||
try:
|
||||
arr = torch.as_tensor(arr)
|
||||
except:
|
||||
pass
|
||||
size = arr.shape[0]
|
||||
sum_x = torch.sum(arr[:, 0])
|
||||
sum_y = torch.sum(arr[:, 1])
|
||||
return sum_x/size, sum_y/size
|
||||
|
||||
# Globals
|
||||
global_delta = self.delta(xy_sequence[0], xy_sequence[-1])
|
||||
global_theta = self.get_theta(*global_delta)
|
||||
global_delta = self.delta(rotated_sequence[0], rotated_sequence[-1])
|
||||
global_r = self.get_r(*global_delta)
|
||||
|
||||
def f(*args):
|
||||
return args
|
||||
centroid = centroid_for(self._sequential_pairwise_map(f, rotated_sequence, on_deltas=True))
|
||||
|
||||
hull_length = sum(self.get_r_for_sequence(torch.cat((rotated_sequence, rotated_sequence[0].unsqueeze(0)))))
|
||||
|
||||
# For Each
|
||||
theta_seq = self.get_theta_for_sequence(xy_sequence)
|
||||
theta_seq = self.get_theta_for_sequence(rotated_sequence)
|
||||
mean_theta = sum(theta_seq) / len(theta_seq)
|
||||
theta_sum = sum([abs(theta) for theta in theta_seq])
|
||||
std_theta = stdev(map(float, theta_seq))
|
||||
|
||||
return torch.stack((global_r, torch.as_tensor(std_theta), mean_theta, global_theta))
|
||||
return torch.stack((centroid[0], centroid[1], torch.as_tensor(std_theta), mean_theta, theta_sum, hull_length))
|
||||
|
||||
def cluster_motion(self, trajectory_samples, cluster_class=KMeans):
|
||||
cluster_class = cluster_class(3)
|
||||
def cluster_motion(self, trajectory_samples, clustering='kmeans'):
|
||||
if clustering.lower() == 'kmeans':
|
||||
cluster_class = KMeans(3)
|
||||
std, mean = torch.std_mean(trajectory_samples, dim=0)
|
||||
trajectory_samples = (trajectory_samples - mean) / std
|
||||
|
||||
std, mean = torch.std_mean(trajectory_samples, dim=0)
|
||||
trajectory_samples = (trajectory_samples - mean) / std
|
||||
unique_seq_identifiers = torch.stack([self.get_unique_seq_identifier(trajectory)
|
||||
for trajectory in trajectory_samples])
|
||||
|
||||
unique_seq_identifiers = torch.stack([self.get_unique_seq_identifier(trajectory)
|
||||
for trajectory in trajectory_samples])
|
||||
clustered_movement = cluster_class.fit_predict(unique_seq_identifiers)
|
||||
elif clustering.lower() == 'fastdtw':
|
||||
# Move all points so that the first point is always (0, 0)
|
||||
moved_sequence = self.move_to_zero(trajectory_samples)
|
||||
rotated_sequences = []
|
||||
for sequence in moved_sequence:
|
||||
# Rotate, so that x is zero for last point
|
||||
angle = self.get_theta(*self.delta(sequence[0], sequence[1]))
|
||||
rotated_sequence = torch.as_tensor([self._rotatePoint(point, sequence[0], -angle)
|
||||
for point in sequence[1:]])
|
||||
rotated_sequence = torch.cat((sequence[0].unsqueeze(0), rotated_sequence)).unsqueeze(0)
|
||||
rotated_sequences.append(rotated_sequence)
|
||||
# deltas = [self._sequential_pairwise_map(self.delta, x, on_deltas=False) for x in rotated_sequence]
|
||||
t = torch.cat(rotated_sequences)
|
||||
# t = torch.as_tensor(deltas)
|
||||
z = torch.zeros((t.shape[0], t.shape[0]))
|
||||
|
||||
clustered_movement = cluster_class.fit_predict(unique_seq_identifiers)
|
||||
if False:
|
||||
from sklearn.decomposition import PCA
|
||||
p = PCA(2)
|
||||
t = p.fit_transform(unique_seq_identifiers)
|
||||
f = plt.figure()
|
||||
plt.scatter(t[:, 0], t[:,1])
|
||||
plt.show()
|
||||
import fastdtw
|
||||
for idx, x in tqdm(enumerate(t), total=z.shape[0]):
|
||||
for idy, y in enumerate(t):
|
||||
z[idx, idy] = fastdtw.fastdtw(x, y)[0]
|
||||
|
||||
from sklearn.cluster.hierarchical import AgglomerativeClustering
|
||||
clusterer = KMeans(3)
|
||||
clustered_movement = clusterer.fit_predict(z)
|
||||
else:
|
||||
raise NotImplementedError
|
||||
|
||||
return clustered_movement.reshape(-1, 1)
|
||||
|
||||
|
@ -18,7 +18,6 @@ def load_and_predict(path_like_element):
|
||||
weights_path=path_like_element,
|
||||
tags_csv=os.path.join(base_dir, 'default', 'version_0', 'meta_tags.csv'),
|
||||
on_gpu=True if torch.cuda.is_available() else False,
|
||||
# map_location=None
|
||||
)
|
||||
print(f'... loading model named: "{model.name}" from timestamp: {splitpath[3]}')
|
||||
|
||||
@ -44,7 +43,7 @@ def load_and_predict(path_like_element):
|
||||
# Important:
|
||||
# Use all given valdiation samples, even if they relate to differnt maps. This is important since we want to have a
|
||||
# view on the complete latent space, not just in relation to a single basemap, which would be a major bias.
|
||||
p.print_possible_latent_spaces(dataset, save=os.path.join(base_dir, f'latent_space'))
|
||||
p.print_possible_latent_spaces(dataset, save=os.path.join(base_dir, f'latent_space'), cluster_by_motion=False)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
Loading…
x
Reference in New Issue
Block a user