transition
This commit is contained in:
@ -5,9 +5,7 @@ from functools import reduce
|
||||
import torch
|
||||
from torch import randn
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import data_loader
|
||||
from torch.nn import Module, Linear, ReLU, Sigmoid, Dropout, GRU, Tanh
|
||||
from torchvision.transforms import Normalize
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
@ -27,21 +25,12 @@ class LightningModuleOverrides:
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def forward(self, x):
|
||||
return self.network.forward(x)
|
||||
|
||||
@data_loader
|
||||
@pl.data_loader
|
||||
def train_dataloader(self):
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer(os.path.join('data', 'training'), self.size, self.step),
|
||||
shuffle=True, batch_size=10000, num_workers=num_workers)
|
||||
"""
|
||||
@data_loader
|
||||
def val_dataloader(self):
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer(os.path.join('data', 'validation'), self.size, self.step),
|
||||
shuffle=True, batch_size=100, num_workers=num_workers)
|
||||
"""
|
||||
|
||||
|
||||
|
||||
class AbstractNeuralNetwork(Module):
|
||||
@ -56,53 +45,6 @@ class AbstractNeuralNetwork(Module):
|
||||
def forward(self, batch):
|
||||
pass
|
||||
|
||||
|
||||
######################
|
||||
# Abstract Network class following the Lightning Syntax
|
||||
class LightningModule(pl.LightningModule, ABC):
|
||||
|
||||
def __init__(self):
|
||||
super(LightningModule, self).__init__()
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def training_step(self, batch, batch_nb):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def configure_optimizers(self):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
@pl.data_loader
|
||||
def train_dataloader(self):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
"""
|
||||
def validation_step(self, batch, batch_nb):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
def validation_end(self, outputs):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
@pl.data_loader
|
||||
def val_dataloader(self):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
@pl.data_loader
|
||||
def test_dataloader(self):
|
||||
# OPTIONAL
|
||||
pass
|
||||
"""
|
||||
|
||||
#######################
|
||||
# Utility Modules
|
||||
class TimeDistributed(Module):
|
||||
@ -167,12 +109,14 @@ class AvgDimPool(Module):
|
||||
# Generators, Decoders, Encoders, Discriminators
|
||||
class Discriminator(Module):
|
||||
|
||||
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU):
|
||||
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU, use_norm=False):
|
||||
super(Discriminator, self).__init__()
|
||||
self.features = features
|
||||
self.latent_dim = latent_dim
|
||||
self.l1 = Linear(self.latent_dim, self.features * 10)
|
||||
self.norm1 = torch.nn.BatchNorm1d(self.features * 10) if use_norm else False
|
||||
self.l2 = Linear(self.features * 10, self.features * 20)
|
||||
self.norm2 = torch.nn.BatchNorm1d(self.features * 20) if use_norm else False
|
||||
self.lout = Linear(self.features * 20, 1)
|
||||
self.dropout = Dropout(dropout)
|
||||
self.activation = activation()
|
||||
@ -180,9 +124,15 @@ class Discriminator(Module):
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
tensor = self.l1(x)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.dropout(tensor)
|
||||
if self.norm1:
|
||||
tensor = self.norm1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.l2(tensor)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.dropout(tensor)
|
||||
if self.norm2:
|
||||
tensor = self.norm2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.lout(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
||||
@ -296,13 +246,13 @@ class AttentionEncoder(Module):
|
||||
|
||||
class PoolingEncoder(Module):
|
||||
|
||||
def __init__(self, lat_dim, variational=False):
|
||||
def __init__(self, lat_dim, variational=False, use_norm=True):
|
||||
self.lat_dim = lat_dim
|
||||
self.variational = variational
|
||||
|
||||
super(PoolingEncoder, self).__init__()
|
||||
self.p = AvgDimPool()
|
||||
self.l = EncoderLinearStack()
|
||||
self.l = EncoderLinearStack(use_norm=use_norm)
|
||||
if variational:
|
||||
self.mu = Linear(self.l.shape, self.lat_dim)
|
||||
self.logvar = Linear(self.l.shape, self.lat_dim)
|
||||
|
Reference in New Issue
Block a user