transition
This commit is contained in:
@ -11,9 +11,10 @@ device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
||||
|
||||
class AdversarialAE(AutoEncoder):
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
def __init__(self, *args, train_on_predictions=False, use_norm=False, **kwargs):
|
||||
super(AdversarialAE, self).__init__(*args, **kwargs)
|
||||
self.discriminator = Discriminator(self.latent_dim, self.features)
|
||||
self.discriminator = Discriminator(self.latent_dim, self.features, use_norm=use_norm)
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def forward(self, batch):
|
||||
# Encoder
|
||||
@ -25,13 +26,6 @@ class AdversarialAE(AutoEncoder):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AdversarialAE_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(AdversarialAE_LO, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def training_step(self, batch, _, optimizer_i):
|
||||
x, y = batch
|
||||
z, x_hat = self.forward(x)
|
||||
@ -66,8 +60,7 @@ class AdversarialAE_LO(LightningModuleOverrides):
|
||||
else:
|
||||
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
#FIXME: This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam(self.network.discriminator.parameters(), lr=0.02),
|
||||
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02), ],\
|
||||
|
@ -27,12 +27,6 @@ class AE_WithAttention(AbstractNeuralNetwork, ABC):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AE_WithAttention_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self):
|
||||
super(AE_WithAttention_LO, self).__init__()
|
||||
|
||||
def training_step(self, x, batch_nb):
|
||||
# ToDo: We need a new loss function, fullfilling all attention needs
|
||||
# z, x_hat
|
||||
|
@ -9,9 +9,11 @@ from torch import Tensor
|
||||
# Basic AE-Implementation
|
||||
class AutoEncoder(AbstractNeuralNetwork, ABC):
|
||||
|
||||
def __init__(self, latent_dim: int=0, features: int = 0, use_norm=True, **kwargs):
|
||||
def __init__(self, latent_dim: int=0, features: int = 0, use_norm=True,
|
||||
train_on_predictions=False, **kwargs):
|
||||
assert latent_dim and features
|
||||
super(AutoEncoder, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
self.latent_dim = latent_dim
|
||||
self.features = features
|
||||
self.encoder = Encoder(self.latent_dim, use_norm=use_norm)
|
||||
@ -27,13 +29,6 @@ class AutoEncoder(AbstractNeuralNetwork, ABC):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z, x_hat
|
||||
|
||||
|
||||
class AutoEncoder_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(AutoEncoder_LO, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def training_step(self, batch, batch_nb):
|
||||
x, y = batch
|
||||
# z, x_hat
|
||||
|
@ -5,9 +5,7 @@ from functools import reduce
|
||||
import torch
|
||||
from torch import randn
|
||||
import pytorch_lightning as pl
|
||||
from pytorch_lightning import data_loader
|
||||
from torch.nn import Module, Linear, ReLU, Sigmoid, Dropout, GRU, Tanh
|
||||
from torchvision.transforms import Normalize
|
||||
|
||||
from abc import ABC, abstractmethod
|
||||
|
||||
@ -27,21 +25,12 @@ class LightningModuleOverrides:
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def forward(self, x):
|
||||
return self.network.forward(x)
|
||||
|
||||
@data_loader
|
||||
@pl.data_loader
|
||||
def train_dataloader(self):
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer(os.path.join('data', 'training'), self.size, self.step),
|
||||
shuffle=True, batch_size=10000, num_workers=num_workers)
|
||||
"""
|
||||
@data_loader
|
||||
def val_dataloader(self):
|
||||
num_workers = 0 # os.cpu_count() // 2
|
||||
return DataLoader(DataContainer(os.path.join('data', 'validation'), self.size, self.step),
|
||||
shuffle=True, batch_size=100, num_workers=num_workers)
|
||||
"""
|
||||
|
||||
|
||||
|
||||
class AbstractNeuralNetwork(Module):
|
||||
@ -56,53 +45,6 @@ class AbstractNeuralNetwork(Module):
|
||||
def forward(self, batch):
|
||||
pass
|
||||
|
||||
|
||||
######################
|
||||
# Abstract Network class following the Lightning Syntax
|
||||
class LightningModule(pl.LightningModule, ABC):
|
||||
|
||||
def __init__(self):
|
||||
super(LightningModule, self).__init__()
|
||||
|
||||
@abstractmethod
|
||||
def forward(self, x):
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def training_step(self, batch, batch_nb):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
@abstractmethod
|
||||
def configure_optimizers(self):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
@pl.data_loader
|
||||
def train_dataloader(self):
|
||||
# REQUIRED
|
||||
raise NotImplementedError
|
||||
|
||||
"""
|
||||
def validation_step(self, batch, batch_nb):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
def validation_end(self, outputs):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
@pl.data_loader
|
||||
def val_dataloader(self):
|
||||
# OPTIONAL
|
||||
pass
|
||||
|
||||
@pl.data_loader
|
||||
def test_dataloader(self):
|
||||
# OPTIONAL
|
||||
pass
|
||||
"""
|
||||
|
||||
#######################
|
||||
# Utility Modules
|
||||
class TimeDistributed(Module):
|
||||
@ -167,12 +109,14 @@ class AvgDimPool(Module):
|
||||
# Generators, Decoders, Encoders, Discriminators
|
||||
class Discriminator(Module):
|
||||
|
||||
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU):
|
||||
def __init__(self, latent_dim, features, dropout=.0, activation=ReLU, use_norm=False):
|
||||
super(Discriminator, self).__init__()
|
||||
self.features = features
|
||||
self.latent_dim = latent_dim
|
||||
self.l1 = Linear(self.latent_dim, self.features * 10)
|
||||
self.norm1 = torch.nn.BatchNorm1d(self.features * 10) if use_norm else False
|
||||
self.l2 = Linear(self.features * 10, self.features * 20)
|
||||
self.norm2 = torch.nn.BatchNorm1d(self.features * 20) if use_norm else False
|
||||
self.lout = Linear(self.features * 20, 1)
|
||||
self.dropout = Dropout(dropout)
|
||||
self.activation = activation()
|
||||
@ -180,9 +124,15 @@ class Discriminator(Module):
|
||||
|
||||
def forward(self, x, **kwargs):
|
||||
tensor = self.l1(x)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.dropout(tensor)
|
||||
if self.norm1:
|
||||
tensor = self.norm1(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.l2(tensor)
|
||||
tensor = self.dropout(self.activation(tensor))
|
||||
tensor = self.dropout(tensor)
|
||||
if self.norm2:
|
||||
tensor = self.norm2(tensor)
|
||||
tensor = self.activation(tensor)
|
||||
tensor = self.lout(tensor)
|
||||
tensor = self.sigmoid(tensor)
|
||||
return tensor
|
||||
@ -296,13 +246,13 @@ class AttentionEncoder(Module):
|
||||
|
||||
class PoolingEncoder(Module):
|
||||
|
||||
def __init__(self, lat_dim, variational=False):
|
||||
def __init__(self, lat_dim, variational=False, use_norm=True):
|
||||
self.lat_dim = lat_dim
|
||||
self.variational = variational
|
||||
|
||||
super(PoolingEncoder, self).__init__()
|
||||
self.p = AvgDimPool()
|
||||
self.l = EncoderLinearStack()
|
||||
self.l = EncoderLinearStack(use_norm=use_norm)
|
||||
if variational:
|
||||
self.mu = Linear(self.l.shape, self.lat_dim)
|
||||
self.logvar = Linear(self.l.shape, self.lat_dim)
|
||||
|
@ -6,12 +6,13 @@ import torch
|
||||
|
||||
class SeperatingAAE(Module):
|
||||
|
||||
def __init__(self, latent_dim, features, use_norm=True):
|
||||
def __init__(self, latent_dim, features, train_on_predictions=False, use_norm=True):
|
||||
super(SeperatingAAE, self).__init__()
|
||||
|
||||
self.latent_dim = latent_dim
|
||||
self.features = features
|
||||
self.spatial_encoder = PoolingEncoder(self.latent_dim)
|
||||
self.train_on_predictions = train_on_predictions
|
||||
self.spatial_encoder = PoolingEncoder(self.latent_dim, use_norm=use_norm)
|
||||
self.temporal_encoder = Encoder(self.latent_dim, use_dense=False, use_norm=use_norm)
|
||||
self.decoder = Decoder(self.latent_dim * 2, self.features, use_norm=use_norm)
|
||||
self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
|
||||
@ -28,13 +29,6 @@ class SeperatingAAE(Module):
|
||||
x_hat = self.decoder(z_repeatet)
|
||||
return z_spatial, z_temporal, x_hat
|
||||
|
||||
|
||||
class SeparatingAAE_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(SeparatingAAE_LO, self).__init__()
|
||||
self.train_on_predictions = train_on_predictions
|
||||
|
||||
def training_step(self, batch, _, optimizer_i):
|
||||
x, y = batch
|
||||
spatial_latent_fake, temporal_latent_fake, x_hat = self.network.forward(x)
|
||||
@ -92,7 +86,7 @@ class SeparatingAAE_LO(LightningModuleOverrides):
|
||||
else:
|
||||
raise RuntimeError('This should not have happened, catch me if u can.')
|
||||
|
||||
# This is Fucked up, why do i need to put an additional empty list here?
|
||||
#FixMe: This is Fucked up, why do i need to put an additional empty list here?
|
||||
def configure_optimizers(self):
|
||||
return [Adam([*self.network.spatial_discriminator.parameters(), *self.network.spatial_encoder.parameters()]
|
||||
, lr=0.02),
|
||||
|
@ -12,7 +12,7 @@ class VariationalAE(AbstractNeuralNetwork, ABC):
|
||||
def name(self):
|
||||
return self.__class__.__name__
|
||||
|
||||
def __init__(self, latent_dim=0, features=0, use_norm=True, **kwargs):
|
||||
def __init__(self, latent_dim=0, features=0, use_norm=True, train_on_predictions=False, **kwargs):
|
||||
assert latent_dim and features
|
||||
super(VariationalAE, self).__init__()
|
||||
self.features = features
|
||||
@ -34,13 +34,6 @@ class VariationalAE(AbstractNeuralNetwork, ABC):
|
||||
x_hat = self.decoder(repeat(z))
|
||||
return mu, logvar, x_hat
|
||||
|
||||
|
||||
class VAE_LO(LightningModuleOverrides):
|
||||
|
||||
def __init__(self, train_on_predictions=False):
|
||||
super(VAE_LO, self).__init__()
|
||||
self.train_on_predictions=train_on_predictions
|
||||
|
||||
def training_step(self, batch, _):
|
||||
x, y = batch
|
||||
mu, logvar, x_hat = self.forward(x)
|
||||
|
Reference in New Issue
Block a user