Future Prediction Training

This commit is contained in:
Si11ium 2019-09-29 11:50:38 +02:00
parent a70c9b7fef
commit 3e9ef013b3
8 changed files with 86 additions and 88 deletions

View File

@ -195,17 +195,21 @@ class Trajectories(Dataset):
yield self[i]
def __getitem__(self, item):
return self.data[item:item + self.size * self.step or None:self.step][:, 2:]
assert isinstance(item, int), f"Item-Key has to be Integer, but was {type(item)}"
x = self.data[item:item + self.size * self.step or None:self.step][:, 2:]
futureItem = item + 1
y = self.data[futureItem:futureItem + self.size * self.step or None:self.step][:, 2:]
return x, y
def get_isovist_measures_by_key(self, item):
return self[item]
return self[item][0]
def get_coordinates_by_key(self, item):
return self.data[item:item + self.size * self.step or None:self.step][:, :2]
def get_both_by_key(self, item):
data = self.data[item:item + self.size * self.step or None:self.step]
return data
return data[0]
def __len__(self):
total_len = self.data.size()[0]

View File

@ -28,16 +28,19 @@ class AdversarialAE(AutoEncoder):
class AdversarialAE_LO(LightningModuleOverrides):
def __init__(self):
def __init__(self, train_on_predictions=False):
super(AdversarialAE_LO, self).__init__()
self.train_on_predictions = train_on_predictions
def training_step(self, batch, _, optimizer_i):
x, y = batch
z, x_hat = self.forward(x)
if optimizer_i == 0:
# ---------------------
# Train Discriminator
# ---------------------p
# latent_fake, reconstruction
latent_fake = self.network.encoder.forward(batch)
latent_fake = z
latent_real = self.normal.sample(latent_fake.shape).to(device)
# Evaluate the input
@ -57,9 +60,7 @@ class AdversarialAE_LO(LightningModuleOverrides):
# ---------------------
# Train AutoEncoder
# ---------------------
# z, x_hat
_, batch_hat = self.forward(batch)
loss = mse_loss(batch, batch_hat)
loss = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat)
return {'loss': loss}
else:

View File

@ -37,7 +37,7 @@ class AE_WithAttention_LO(LightningModuleOverrides):
# ToDo: We need a new loss function, fullfilling all attention needs
# z, x_hat
_, x_hat = self.forward(x)
loss = mse_loss(x, x_hat)
loss = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat)
return {'loss': loss}
def configure_optimizers(self):

View File

@ -9,13 +9,13 @@ from torch import Tensor
# Basic AE-Implementation
class AutoEncoder(AbstractNeuralNetwork, ABC):
def __init__(self, latent_dim: int=0, features: int = 0, **kwargs):
def __init__(self, latent_dim: int=0, features: int = 0, use_norm=True, **kwargs):
assert latent_dim and features
super(AutoEncoder, self).__init__()
self.latent_dim = latent_dim
self.features = features
self.encoder = Encoder(self.latent_dim)
self.decoder = Decoder(self.latent_dim, self.features)
self.encoder = Encoder(self.latent_dim, use_norm=use_norm)
self.decoder = Decoder(self.latent_dim, self.features, use_norm=use_norm)
def forward(self, batch: Tensor):
# Encoder
@ -30,13 +30,15 @@ class AutoEncoder(AbstractNeuralNetwork, ABC):
class AutoEncoder_LO(LightningModuleOverrides):
def __init__(self):
def __init__(self, train_on_predictions=False):
super(AutoEncoder_LO, self).__init__()
self.train_on_predictions = train_on_predictions
def training_step(self, x, batch_nb):
def training_step(self, batch, batch_nb):
x, y = batch
# z, x_hat
_, x_hat = self.forward(x)
loss = mse_loss(x, x_hat)
loss = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat)
return {'loss': loss}
def configure_optimizers(self):

View File

@ -6,7 +6,7 @@ import torch
from torch import randn
import pytorch_lightning as pl
from pytorch_lightning import data_loader
from torch.nn import Module, Linear, ReLU, Sigmoid, Dropout, GRU
from torch.nn import Module, Linear, ReLU, Sigmoid, Dropout, GRU, Tanh
from torchvision.transforms import Normalize
from abc import ABC, abstractmethod
@ -33,8 +33,7 @@ class LightningModuleOverrides:
@data_loader
def tng_dataloader(self):
num_workers = 0 # os.cpu_count() // 2
return DataLoader(DataContainer(os.path.join('data', 'training'),
self.size, self.step, transforms=[Normalize]),
return DataLoader(DataContainer(os.path.join('data', 'training'), self.size, self.step),
shuffle=True, batch_size=10000, num_workers=num_workers)
"""
@data_loader
@ -193,17 +192,23 @@ class Discriminator(Module):
class DecoderLinearStack(Module):
def __init__(self, out_shape):
def __init__(self, out_shape, use_norm=True):
super(DecoderLinearStack, self).__init__()
self.l1 = Linear(10, 100, bias=True)
self.norm1 = torch.nn.BatchNorm1d(100) if use_norm else False
self.l2 = Linear(100, out_shape, bias=True)
self.norm2 = torch.nn.BatchNorm1d(out_shape) if use_norm else False
self.activation = ReLU()
self.activation_out = Sigmoid()
self.activation_out = Tanh()
def forward(self, x):
tensor = self.l1(x)
if self.norm1:
tensor = self.norm1(tensor)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
if self.norm2:
tensor = self.norm2(tensor)
tensor = self.activation_out(tensor)
return tensor
@ -213,62 +218,64 @@ class EncoderLinearStack(Module):
@property
def shape(self):
x = randn(self.features).unsqueeze(0)
x = torch.cat((x,x,x,x,x))
output = self(x)
return output.shape[1:]
def __init__(self, features=6, separated=False, use_bias=True):
def __init__(self, features=6, factor=10, use_bias=True, use_norm=True):
super(EncoderLinearStack, self).__init__()
# FixMe: Get Hardcoded shit out of here
self.separated = separated
self.features = features
if self.separated:
self.l1s = [Linear(1, 10, bias=use_bias) for _ in range(self.features)]
self.l2s = [Linear(10, 5, bias=use_bias) for _ in range(self.features)]
else:
self.l1 = Linear(self.features, self.features * 10, bias=use_bias)
self.l2 = Linear(self.features * 10, self.features * 5, bias=use_bias)
self.l3 = Linear(self.features * 5, 10, use_bias)
self.l1 = Linear(self.features, self.features * factor, bias=use_bias)
self.l2 = Linear(self.features * factor, self.features * factor//2, bias=use_bias)
self.l3 = Linear(self.features * factor//2, factor, use_bias)
self.norm1 = torch.nn.BatchNorm1d(self.features * factor) if use_norm else False
self.norm2 = torch.nn.BatchNorm1d(self.features * factor//2) if use_norm else False
self.norm3 = torch.nn.BatchNorm1d(factor) if use_norm else False
self.activation = ReLU()
def forward(self, x):
if self.separated:
x = x.unsqueeze(-1)
tensors = [self.l1s[idx](x[:, idx, :]) for idx in range(len(self.l1s))]
tensors = [self.activation(tensor) for tensor in tensors]
tensors = [self.l2s[idx](tensors[idx]) for idx in range(len(self.l2s))]
tensors = [self.activation(tensor) for tensor in tensors]
tensor = torch.cat(tensors, dim=-1)
else:
tensor = self.l1(x)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
tensor = self.l1(x)
if self.norm1:
tensor = self.norm1(tensor)
tensor = self.activation(tensor)
tensor = self.l2(tensor)
if self.norm2:
tensor = self.norm2(tensor)
tensor = self.activation(tensor)
tensor = self.l3(tensor)
if self.norm3:
tensor = self.norm3(tensor)
tensor = self.activation(tensor)
return tensor
class Encoder(Module):
def __init__(self, lat_dim, variational=False, separate_features=False, with_dense=True, features=6):
def __init__(self, lat_dim, variational=False, use_dense=True, features=6, use_norm=True):
self.lat_dim = lat_dim
self.features = features
self.lstm_cells = 10
self.variational = variational
super(Encoder, self).__init__()
self.l_stack = TimeDistributed(EncoderLinearStack(separated=separate_features,
features=features)) if with_dense else False
self.gru = GRU(10 if with_dense else self.features, 10, batch_first=True)
self.l_stack = TimeDistributed(EncoderLinearStack(features, use_norm=use_norm)) if use_dense else False
self.gru = GRU(10 if use_dense else self.features, self.lstm_cells, batch_first=True)
self.filter = RNNOutputFilter(only_last=True)
self.norm = torch.nn.BatchNorm1d(self.lstm_cells) if use_norm else False
if variational:
self.mu = Linear(10, self.lat_dim)
self.logvar = Linear(10, self.lat_dim)
self.mu = Linear(self.lstm_cells, self.lat_dim)
self.logvar = Linear(self.lstm_cells, self.lat_dim)
else:
self.lat_dim_layer = Linear(10, self.lat_dim)
self.lat_dim_layer = Linear(self.lstm_cells, self.lat_dim)
def forward(self, x):
if self.l_stack:
x = self.l_stack(x)
tensor = self.gru(x)
tensor = self.filter(tensor)
if self.norm:
tensor = self.norm(tensor)
if self.variational:
tensor = self.mu(tensor), self.logvar(tensor)
else:
@ -316,17 +323,20 @@ class PoolingEncoder(Module):
class Decoder(Module):
def __init__(self, latent_dim, *args, variational=False):
def __init__(self, latent_dim, *args, lstm_cells=10, use_norm=True, variational=False):
self.variational = variational
super(Decoder, self).__init__()
self.g = GRU(latent_dim, 10, batch_first=True)
self.gru = GRU(latent_dim, lstm_cells, batch_first=True)
self.norm = TimeDistributed(torch.nn.BatchNorm1d(lstm_cells) if use_norm else False)
self.filter = RNNOutputFilter()
self.l_stack = TimeDistributed(DecoderLinearStack(*args))
self.l_stack = TimeDistributed(DecoderLinearStack(*args, use_norm=use_norm))
pass
def forward(self, x):
tensor = self.g(x)
tensor = self.gru(x)
tensor = self.filter(tensor)
if self.norm:
tensor = self.norm(tensor)
tensor = self.l_stack(tensor)
return tensor

View File

@ -6,14 +6,14 @@ import torch
class SeperatingAAE(Module):
def __init__(self, latent_dim, features):
def __init__(self, latent_dim, features, use_norm=True):
super(SeperatingAAE, self).__init__()
self.latent_dim = latent_dim
self.features = features
self.spatial_encoder = PoolingEncoder(self.latent_dim)
self.temporal_encoder = Encoder(self.latent_dim, with_dense=False)
self.decoder = Decoder(self.latent_dim * 2, self.features)
self.temporal_encoder = Encoder(self.latent_dim, use_dense=False, use_norm=use_norm)
self.decoder = Decoder(self.latent_dim * 2, self.features, use_norm=use_norm)
self.spatial_discriminator = Discriminator(self.latent_dim, self.features)
self.temporal_discriminator = Discriminator(self.latent_dim, self.features)
@ -29,22 +29,15 @@ class SeperatingAAE(Module):
return z_spatial, z_temporal, x_hat
class SuperSeperatingAAE(SeperatingAAE):
def __init__(self, *args):
super(SuperSeperatingAAE, self).__init__(*args)
self.temporal_encoder = Encoder(self.latent_dim, separate_features=True)
def forward(self, batch):
return batch
class SeparatingAAE_LO(LightningModuleOverrides):
def __init__(self):
def __init__(self, train_on_predictions=False):
super(SeparatingAAE_LO, self).__init__()
self.train_on_predictions = train_on_predictions
def training_step(self, batch, _, optimizer_i):
spatial_latent_fake, temporal_latent_fake, batch_hat = self.network.forward(batch)
x, y = batch
spatial_latent_fake, temporal_latent_fake, x_hat = self.network.forward(x)
if optimizer_i == 0:
# ---------------------
# Train temporal Discriminator
@ -93,7 +86,7 @@ class SeparatingAAE_LO(LightningModuleOverrides):
# ---------------------
# Train AutoEncoder
# ---------------------
loss = mse_loss(batch, batch_hat)
loss = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat)
return {'loss': loss}
else:

View File

@ -12,13 +12,13 @@ class VariationalAE(AbstractNeuralNetwork, ABC):
def name(self):
return self.__class__.__name__
def __init__(self, latent_dim=0, features=0, **kwargs):
def __init__(self, latent_dim=0, features=0, use_norm=True, **kwargs):
assert latent_dim and features
super(VariationalAE, self).__init__()
self.features = features
self.latent_dim = latent_dim
self.encoder = Encoder(self.latent_dim, variational=True)
self.decoder = Decoder(self.latent_dim, self.features, variational=True)
self.encoder = Encoder(self.latent_dim, variational=True, use_norm=use_norm)
self.decoder = Decoder(self.latent_dim, self.features, variational=True, use_norm=use_norm)
@staticmethod
def reparameterize(mu, logvar):
@ -37,12 +37,14 @@ class VariationalAE(AbstractNeuralNetwork, ABC):
class VAE_LO(LightningModuleOverrides):
def __init__(self):
def __init__(self, train_on_predictions=False):
super(VAE_LO, self).__init__()
self.train_on_predictions=train_on_predictions
def training_step(self, x, _):
def training_step(self, batch, _):
x, y = batch
mu, logvar, x_hat = self.forward(x)
BCE = mse_loss(x_hat, x, reduction='mean')
BCE = mse_loss(y, x_hat) if self.train_on_predictions else mse_loss(x, x_hat)
# see Appendix B from VAE paper:
# Kingma and Welling. Auto-Encoding Variational Bayes. ICLR, 2014

View File

@ -10,7 +10,7 @@ from distutils.util import strtobool
from networks.auto_encoder import AutoEncoder, AutoEncoder_LO
from networks.variational_auto_encoder import VariationalAE, VAE_LO
from networks.adverserial_auto_encoder import AdversarialAE_LO, AdversarialAE
from networks.seperating_adversarial_auto_encoder import SeperatingAAE, SeparatingAAE_LO, SuperSeperatingAAE
from networks.seperating_adversarial_auto_encoder import SeperatingAAE, SeparatingAAE_LO
from networks.modules import LightningModule
from pytorch_lightning import Trainer
@ -22,7 +22,7 @@ args.add_argument('--step', default=5)
args.add_argument('--features', default=6)
args.add_argument('--size', default=9)
args.add_argument('--latent_dim', default=2)
args.add_argument('--model', default='VAE_Model')
args.add_argument('--model', default='AE_Model')
args.add_argument('--refresh', type=strtobool, default=False)
@ -78,20 +78,6 @@ class SAAE_Model(SeparatingAAE_LO, LightningModule):
pass
class SSAAE_Model(SeparatingAAE_LO, LightningModule):
def __init__(self, parameters: Namespace):
assert all([x in parameters for x in ['step', 'size', 'latent_dim', 'features']])
self.size = parameters.size
self.latent_dim = parameters.latent_dim
self.features = parameters.features
self.step = parameters.step
super(SSAAE_Model, self).__init__()
self.normal = Normal(0, 1)
self.network = SuperSeperatingAAE(self.latent_dim, self.features)
pass
if __name__ == '__main__':
arguments = args.parse_args()