Visualization approach 1

This commit is contained in:
Si11ium
2019-09-13 13:36:13 +02:00
parent 18305a9e7e
commit 1386cdfd33
9 changed files with 185 additions and 50 deletions

View File

@ -14,6 +14,9 @@ from torch.utils.data import DataLoader
from dataset import DataContainer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LightningModuleOverrides:
@property
@ -25,8 +28,8 @@ class LightningModuleOverrides:
@data_loader
def tng_dataloader(self):
num_workers = 0 # os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step),
num_workers = 0 # os.cpu_count() // 2
return DataLoader(DataContainer(os.path.join('data', 'training'), self.size, self.step),
shuffle=True, batch_size=10000, num_workers=num_workers)
@ -236,6 +239,19 @@ class Encoder(Module):
return tensor
class AttentionEncoder(Module):
def __init__(self):
super(AttentionEncoder, self).__init__()
self.l_stack = TimeDistributed(EncoderLinearStack())
def forward(self, x):
tensor = self.l_stack(x)
torch.bmm() # TODO Add Attention here
return tensor
class PoolingEncoder(Module):
def __init__(self, lat_dim, variational=False):