Visualization approach 1

This commit is contained in:
Si11ium
2019-09-13 13:36:13 +02:00
parent 18305a9e7e
commit 1386cdfd33
9 changed files with 185 additions and 50 deletions

View File

@ -50,7 +50,7 @@ class AdversarialAELightningOverrides(LightningModuleOverrides):
# Calculate the mean over both the real and the fake acc
# ToDo: do i need to compute this seperate?
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake)
d_loss = 0.5 * torch.add(d_loss_real, d_loss_fake) * 0.001
return {'loss': d_loss}
elif optimizer_i == 1:
@ -69,7 +69,7 @@ class AdversarialAELightningOverrides(LightningModuleOverrides):
# This is Fucked up, why do i need to put an additional empty list here?
def configure_optimizers(self):
return [Adam(self.network.discriminator.parameters(), lr=0.02),
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02)],\
Adam([*self.network.encoder.parameters(), *self.network.decoder.parameters()], lr=0.02), ],\
[]

View File

@ -0,0 +1,48 @@
from torch.optim import Adam
from .modules import *
from torch.nn.functional import mse_loss
from torch import Tensor
#######################
# Basic AE-Implementation
class AutoEncoder(AbstractNeuralNetwork, ABC):
def __init__(self, latent_dim: int=0, features: int = 0, **kwargs):
assert latent_dim and features
super(AutoEncoder, self).__init__()
self.latent_dim = latent_dim
self.features = features
self.encoder = Encoder(self.latent_dim)
self.decoder = Decoder(self.latent_dim, self.features)
def forward(self, batch: Tensor):
# Encoder
# outputs, hidden (Batch, Timesteps aka. Size, Features / Latent Dim Size)
z = self.encoder(batch)
# Decoder
# First repeat the data accordingly to the batch size
z_repeatet = Repeater((batch.shape[0], batch.shape[1], -1))(z)
x_hat = self.decoder(z_repeatet)
return z, x_hat
class AutoEncoderLightningOverrides(LightningModuleOverrides):
def __init__(self):
super(AutoEncoderLightningOverrides, self).__init__()
def training_step(self, x, batch_nb):
# ToDo: We need a new loss function, fullfilling all attention needs
# z, x_hat
_, x_hat = self.forward(x)
loss = mse_loss(x, x_hat)
return {'loss': loss}
def configure_optimizers(self):
return [Adam(self.parameters(), lr=0.02)]
if __name__ == '__main__':
raise PermissionError('Get out of here - never run this module')

View File

@ -14,6 +14,9 @@ from torch.utils.data import DataLoader
from dataset import DataContainer
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class LightningModuleOverrides:
@property
@ -25,8 +28,8 @@ class LightningModuleOverrides:
@data_loader
def tng_dataloader(self):
num_workers = 0 # os.cpu_count() // 2
return DataLoader(DataContainer('data', self.size, self.step),
num_workers = 0 # os.cpu_count() // 2
return DataLoader(DataContainer(os.path.join('data', 'training'), self.size, self.step),
shuffle=True, batch_size=10000, num_workers=num_workers)
@ -236,6 +239,19 @@ class Encoder(Module):
return tensor
class AttentionEncoder(Module):
def __init__(self):
super(AttentionEncoder, self).__init__()
self.l_stack = TimeDistributed(EncoderLinearStack())
def forward(self, x):
tensor = self.l_stack(x)
torch.bmm() # TODO Add Attention here
return tensor
class PoolingEncoder(Module):
def __init__(self, lat_dim, variational=False):

View File

@ -4,9 +4,6 @@ from networks.modules import *
import torch
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
class SeperatingAdversarialAutoEncoder(Module):
def __init__(self, latent_dim, features):
@ -58,7 +55,7 @@ class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
# Calculate the mean over bot the real and the fake acc
# ToDo: do i need to compute this seperate?
d_loss = 0.5 * torch.add(temporal_loss_real, temporal_loss_fake)
d_loss = 0.5 * torch.add(temporal_loss_real, temporal_loss_fake) * 0.001
return {'loss': d_loss}
if optimizer_i == 1:
@ -80,7 +77,7 @@ class SeparatingAdversarialAELightningOverrides(LightningModuleOverrides):
# Calculate the mean over bot the real and the fake acc
# ToDo: do i need to compute this seperate?
d_loss = 0.5 * torch.add(spatial_loss_real, spatial_loss_fake)
d_loss = 0.5 * torch.add(spatial_loss_real, spatial_loss_fake) * 0.001
return {'loss': d_loss}
elif optimizer_i == 2: