2021-03-18 07:45:07 +01:00

92 lines
3.0 KiB
Python

from argparse import Namespace
import warnings
from pytorch_lightning import Trainer, Callback
from pytorch_lightning.callbacks import LearningRateMonitor, ModelCheckpoint
from ml_lib.utils.callbacks import BestScoresCallback
from ml_lib.utils.config import parse_comandline_args_add_defaults
from ml_lib.utils.loggers import Logger
import variables as v
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
def run_lightning_loop(h_params, data_class, model_class, additional_callbacks=None):
with Logger.from_argparse_args(h_params) as logger:
# Callbacks
# =============================================================================
# Checkpoint Saving
ckpt_callback = ModelCheckpoint(
monitor='PL_recall_score',
dirpath=str(logger.log_dir),
filename='ckpt_weights',
mode='max',
verbose=False,
save_top_k=3,
save_last=True
)
# Learning Rate Logger
lr_logger = LearningRateMonitor(logging_interval='epoch')
# Track best scores
score_callback = BestScoresCallback(['PL_recall_score'])
callbacks = [ckpt_callback, lr_logger, score_callback]
if additional_callbacks and isinstance(additional_callbacks, Callback):
callbacks.append(additional_callbacks)
elif additional_callbacks and isinstance(additional_callbacks, list):
callbacks.extend(additional_callbacks)
else:
pass
# START
# =============================================================================
# Let Datamodule pull what it wants
datamodule = data_class.from_argparse_args(h_params)
datamodule.setup()
# Let Trainer pull what it wants and add callbacks
trainer = Trainer.from_argparse_args(h_params, logger=logger, callbacks=callbacks)
# Let Model pull what it wants
model = model_class.from_argparse_args(h_params, in_shape=datamodule.shape, n_classes=v.N_CLASS_multi)
model.init_weights()
# trainer.test(model=model, datamodule=datamodule)
trainer.fit(model, datamodule)
trainer.save_checkpoint(logger.save_dir / 'last_weights.ckpt')
try:
trainer.test(model=model, datamodule=datamodule)
except:
print('Test did not Suceed!')
pass
try:
logger.log_metrics(score_callback.best_scores, step=trainer.global_step+1)
except:
print('debug max_score_logging')
return score_callback.best_scores['PL_recall_score']
if __name__ == '__main__':
# Parse comandline args, read config and get model
cmd_args, found_data_class, found_model_class = parse_comandline_args_add_defaults('_parameters.ini')
# To NameSpace
hparams = Namespace(**cmd_args)
# Start
# -----------------
run_lightning_loop(hparams, found_data_class, found_model_class)
print('done')
pass