Files
Mel_Vision_Transformer_ComP…/notebooks/Study Plots.ipynb
2021-04-02 08:45:11 +02:00

2644 lines
138 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 79,
"outputs": [],
"source": [
"import pickle\n",
"\n",
"from pathlib import Path\n",
"from matplotlib import pyplot as plt\n",
"\n",
"import variables as v\n",
"import optuna"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% Imports\n"
}
}
},
{
"cell_type": "code",
"execution_count": 78,
"outputs": [],
"source": [
"_ROOT = Path('..') / 'output' / 'study'\n",
"sr = 16000\n",
"roots = [v.CCS_Root, v.PRIMATES_Root]\n",
"ext = 'png'\n",
"study_ext = '.pkl'\n",
"study_name = 'study_no-name-1136e492-bccf-4bc5-9367-7eba36336e3e_trial67'"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% Variables\n"
}
}
},
{
"cell_type": "code",
"execution_count": 3,
"outputs": [],
"source": [
"with (_ROOT / (study_name + study_ext)).open('rb') as f:\n",
" study = pickle.load(f)"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 96,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'scheduler': None, 'batch_size': 15, 'target_mel_length_in_seconds': 1.5, 'random_apply_chance': 0.2, 'loudness_ratio': 0.4, 'shift_ratio': 0.1, 'noise_ratio': 0.0, 'mask_ratio': 0.30000000000000004, 'lr': 0.0009966735077655562, 'dropout': 0.0, 'lat_dim': 3, 'sampler': 'WeightedRandomSampler', 'mlp_dim': 1, 'head_dim': 5, 'patch_size': 9, 'attn_depth': 6, 'heads': 6, 'embedding_size': 60}\n"
]
}
],
"source": [
"print(study.best_params)\n",
"best_params = list(study.best_params.keys())"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
},
{
"cell_type": "code",
"execution_count": 127,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Solarize_Light2', '_classic_test_patch', 'bmh', 'classic', 'dark_background', 'fast', 'fivethirtyeight', 'ggplot', 'grayscale', 'seaborn', 'seaborn-bright', 'seaborn-colorblind', 'seaborn-dark', 'seaborn-dark-palette', 'seaborn-darkgrid', 'seaborn-deep', 'seaborn-muted', 'seaborn-notebook', 'seaborn-paper', 'seaborn-pastel', 'seaborn-poster', 'seaborn-talk', 'seaborn-ticks', 'seaborn-white', 'seaborn-whitegrid', 'tableau-colorblind10']\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"<ipython-input-127-f1861c5cd682>:22: ExperimentalWarning:\n",
"\n",
"plot_param_importances is experimental (supported from v2.2.0). The interface can change in the future.\n",
"\n"
]
},
{
"data": {
"text/plain": "<Figure size 640x480 with 1 Axes>",
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAqEAAAGwCAYAAACZwLz9AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAADAfUlEQVR4nOzdeVxN+f/A8deVSnuSElKikiVblmTJNhmjEQaNNbuxxJAla9mX7IYxzBTGYBaMr53IkiW70JA1Q6OxlTCh+v3h0fm5WlTS5v18PO5jOud8zue8z8103/ezHVVycnIyQgghhBBC5KIieR2AEEIIIYT49EgSKoQQQgghcp0koUIIIYQQItdJEiqEEEIIIXKdJKFCCCGEECLXSRIqhBBCCCFynSShQgghhBAi1xXN6wCESE9SUhL37t3DwMAAlUqV1+EIIYQQIhOSk5N5+vQppUuXpkiR9Ns7JQkV+da9e/ewtLTM6zCEEEIIkQ137tyhbNmy6R6XJFTkWwYGBsCbf8SGhoZ5HI0QQgghMiMuLg5LS0vlczw9koSKfCulC97Q0FCSUCGEEKKAed9QOpmYJIQQQgghcp0koUIIIYQQItdJEiqEEEIIIXKdJKFCCCGEECLXSRIqhBBCCCFynSShQgghhBAi10kSKoQQQgghcp0koUIIIYQQItdJEiqEEEIIIXKdJKFCCCGEECLXSRIqhBBCCCFynSShQgghhBAi10kSKoQQQgghcp0koUIIIYQQItcVzesAhHifRrMPolFML6/DEEIIIQqNMxOb5XUI0hIqhBBCCCFynyShQgghhBAi10kS+hZXV1eGDx+e12Hg5+dHjRo18joMIYQQQoiPRpLQfMjHx4fg4OC8DiNTvLy88PDwyOswhBBCCFHASBKai16+fJmpcvr6+pQoUeIjR5OxV69e5en1hRBCCFG4SRKajoSEBHx8fChTpgx6enrUq1ePkJAQ5fjDhw/5+uuvKVOmDLq6ulSrVo3169er1eHq6sqQIUMYPnw4pqamuLm5ERISgkqlIjg4GCcnJ3R1dWnQoAFXrlxRznu3Oz6ltTEgIAALCwtKlCjB4MGD1RLF6OhovvjiC3R0dChfvjy//PIL1tbWLFy4MFP3q1KpWL58OV9++SV6enpMnz6dxMRE+vTpQ/ny5dHR0cHe3p5Fixapxbl69Wr+/PNPVCoVKpVKeY/u3LlDp06dMDY2xsTEhLZt23Lr1q1Mv/9CCCGEKNwkCU3HkCFDOHbsGBs2bODChQt07NiRVq1aERkZCcB///1H7dq12b59OxcvXqR///50796dsLAwtXpWr16NlpYWoaGhfP/998r+8ePHM2/ePE6dOkXRokXp3bt3hvEcOHCA69evc+DAAVavXk1QUBBBQUHK8R49enDv3j1CQkL4448/+OGHH4iJicnSPfv5+dGuXTvCw8Pp3bs3SUlJlC1blt9++43Lly8zadIkxo0bx6+//gq8GTbQqVMnWrVqRXR0NNHR0TRo0IBXr17h5uaGgYEBhw8fJjQ0FH19fVq1apVha3BCQgJxcXFqLyGEEEIUTrJOaBqioqIIDAwkKiqK0qVLA28Srl27dhEYGMiMGTMoU6YMPj4+yjlDhw5l9+7d/Prrr9StW1fZb2try5w5c5Tt6OhoAKZPn06TJk0AGDt2LF988QX//fcfxYoVSzOm4sWLs3TpUjQ0NKhUqRJffPEFwcHB9OvXj7/++ot9+/Zx8uRJnJycAFi1ahW2trZZuu8uXbrQq1cvtX3+/v7Kz+XLl+fYsWP8+uuvdOrUCX19fXR0dEhISKBUqVJKuZ9//pmkpCRWrVqFSqUCIDAwEGNjY0JCQvjss8/SvP7MmTPVrieEEEKIwkuS0DSEh4eTmJiInZ2d2v6EhARlrGZiYiIzZszg119/5e7du7x8+ZKEhAR0dXXVzqldu3aa13B0dFR+trCwACAmJoZy5cqlWb5KlSpoaGionRMeHg7AlStXKFq0KLVq1VKOV6xYkeLFi2f2lgGUBPZt3333HT/99BNRUVG8ePGCly9fvnfm/vnz57l27RoGBgZq+//77z+uX7+e7nm+vr6MGDFC2Y6Li8PS0jJL9yCEEEKIgkGS0DTEx8ejoaHB6dOn1RI/eDNpCGDu3LksWrSIhQsXUq1aNfT09Bg+fHiq7mY9vbSf9KOpqan8nNJamJSUlG5Mb5dPOSej8tnxbqwbNmzAx8eHefPm4ezsjIGBAXPnzuXEiRMZ1hMfH0/t2rVZt25dqmMlS5ZM9zxtbW20tbWzF7wQQgghChRJQtNQs2ZNEhMTiYmJoVGjRmmWCQ0NpW3btnTr1g14k0BevXqVypUr52aoANjb2/P69WvOnj2rtLxeu3aNx48ff1C9oaGhNGjQgEGDBin73m3J1NLSIjExUW1frVq12LhxI2ZmZhgaGn5QDEIIIYQonGRiUhrs7Ozo2rUrPXr0YNOmTdy8eZOwsDBmzpzJ9u3bgTdjPffu3cvRo0eJiIhgwIAB3L9/P0/irVSpEi1atKB///6EhYVx9uxZ+vfvj46OjtLKmh22tracOnWK3bt3c/XqVSZOnMjJkyfVylhbW3PhwgWuXLnCgwcPePXqFV27dsXU1JS2bdty+PBhbt68SUhICN7e3vz9998fertCCCGEKAQkCU1HYGAgPXr0YOTIkdjb2+Ph4cHJkyeVMZsTJkygVq1auLm54erqSqlSpfJ00fY1a9Zgbm5O48aNadeuHf369cPAwCDdiU6ZMWDAANq3b0/nzp2pV68eDx8+VGsVBejXrx/29vY4OTlRsmRJQkND0dXV5dChQ5QrV4727dvj4OBAnz59+O+//6RlVAghhBAAqJKTk5PzOgiR8/7++28sLS3Zt28fzZs3z+twsiUuLg4jIyMcx21Fo1jaY2uFEEIIkXVnJjb7aHWnfH7HxsZm2PgkY0ILif379xMfH0+1atWIjo5m9OjRWFtb07hx47wOTQghhBAiFUlCC4lXr14xbtw4bty4gYGBAQ0aNGDdunVoamqybt06BgwYkOZ5VlZWXLp0KZejzZrDY5pIN74QQghRyEh3/Cfg6dOn6U6a0tTUxMrKKpcjypzMNucLIYQQIv+Q7nihMDAwSLVwvBBCCCFEXpLZ8UIIIYQQItdJS6jI9xrNPiiz44UQIhd8zBnTQrxLWkKFEEIIIUSukyRUCCGEEELkuk8qCXV1dWX48OEf9RpeXl55+uSkvBIUFISxsXFehyGEEEKIAuKTSkJFzrC2tmbhwoVq+zp37szVq1fzJiAhhBBCFDgyMUkAkJycTGJiIkWLZu+fhI6ODjo6OjkclRBCCCEKq0+2JfTx48f06NGD4sWLo6ury+eff05kZKRy3M/Pjxo1aqids3DhQqytrZXtxMRERowYgbGxMSVKlGD06NG8u/a/q6sr3t7ejB49GhMTE0qVKoWfn59amSdPntC3b19KliyJoaEhzZo14/z588rx8+fP07RpUwwMDDA0NKR27dqcOnUKgNu3b+Pu7k7x4sXR09OjSpUq7Nix4733HxISgkqlYufOndSuXRttbW2OHDnC9evXadu2Lebm5ujr61OnTh327dundj+3b9/m22+/RaVSoVKpgLS745cvX06FChXQ0tLC3t6etWvXvjcuIYQQQnwaPtkk1MvLi1OnTrF161aOHTtGcnIyrVu35tWrV5muY968eQQFBfHTTz9x5MgRHj16xObNm1OVW716NXp6epw4cYI5c+YwZcoU9u7dqxzv2LEjMTEx7Ny5k9OnT1OrVi2aN2/Oo0ePAOjatStly5bl5MmTnD59mrFjx6KpqQnA4MGDSUhI4NChQ4SHhzN79mz09fUzfQ9jx45l1qxZRERE4OjoSHx8PK1btyY4OJizZ8/SqlUr3N3diYqKAmDTpk2ULVuWKVOmEB0dTXR0dJr1bt68mWHDhjFy5EguXrzIgAED6NWrFwcOHEg3loSEBOLi4tReQgghhCicPsnu+MjISLZu3UpoaCgNGjQAYN26dVhaWrJlyxY6duyYqXoWLlyIr68v7du3B+D7779n9+7dqco5OjoyefJkAGxtbVm6dCnBwcG0bNmSI0eOEBYWRkxMDNra2gAEBASwZcsWfv/9d/r3709UVBSjRo2iUqVKSh0poqKi6NChA9WqVQPAxsYmS+/FlClTaNmypbJtYmJC9erVle2pU6eyefNmtm7dypAhQzAxMUFDQwMDAwNKlSqVbr0BAQF4eXkxaNAgAEaMGMHx48cJCAigadOmaZ4zc+ZM/P39sxS/EEIIIQqmT7IlNCIigqJFi1KvXj1lX4kSJbC3tyciIiJTdcTGxhIdHa1WR9GiRXFyckpV1tHRUW3bwsKCmJgY4E1Xe3x8PCVKlEBfX1953bx5k+vXrwNvEri+ffvSokULZs2apewH8Pb2Ztq0abi4uDB58mQuXLiQ+TcCUsUbHx+Pj48PDg4OGBsbo6+vT0REhNISmlkRERG4uLio7XNxccnw/fX19SU2NlZ53blzJ0vXFEIIIUTB8UkmoZlRpEiRVOM7s9JV/7aUrvMUKpWKpKQk4E3SZ2Fhwblz59ReV65cYdSoUcCb8amXLl3iiy++YP/+/VSuXFnp9u/bty83btyge/fuhIeH4+TkxJIlSzIdm56e+pOIfHx82Lx5MzNmzODw4cOcO3eOatWq8fLly2zde1Zoa2tjaGio9hJCCCFE4fRJJqEODg68fv2aEydOKPsePnzIlStXqFy5MgAlS5bkn3/+UUtEz507p/xsZGSEhYWFWh2vX7/m9OnTWYqlVq1a/PPPPxQtWpSKFSuqvUxNTZVydnZ2fPvtt+zZs4f27dsTGBioHLO0tGTgwIFs2rSJkSNHsnLlyizF8LbQ0FC8vLxo164d1apVo1SpUty6dUutjJaWFomJiRnW4+DgQGhoaKq6U95fIYQQQnzaPskk1NbWlrZt29KvXz+OHDnC+fPn6datG2XKlKFt27bAm1ng//77L3PmzOH69et899137Ny5U62eYcOGMWvWLLZs2cJff/3FoEGDePLkSZZiadGiBc7Oznh4eLBnzx5u3brF0aNHGT9+PKdOneLFixcMGTKEkJAQbt++TWhoKCdPnsTBwQGA4cOHs3v3bm7evMmZM2c4cOCAciy7782mTZs4d+4c58+fp0uXLkqrbQpra2sOHTrE3bt3efDgQZr1jBo1iqCgIJYvX05kZCTz589n06ZN+Pj4ZDs2IYQQQhQen2QSChAYGEjt2rVp06YNzs7OJCcns2PHDqXr3MHBgWXLlvHdd99RvXp1wsLCUiVQI0eOpHv37vTs2RNnZ2cMDAxo165dluJQqVTs2LGDxo0b06tXL+zs7PD09OT27duYm5ujoaHBw4cP6dGjB3Z2dnTq1InPP/9cmcCTmJjI4MGDcXBwoFWrVtjZ2bFs2bJsvy/z58+nePHiNGjQAHd3d9zc3KhVq5ZamSlTpnDr1i0qVKhAyZIl06zHw8ODRYsWERAQQJUqVVixYgWBgYG4urpmOzYhhBBCFB6q5HcHPgqRT8TFxWFkZITjuK1oFNN7/wlCCCE+yJmJzfI6BFEIpHx+x8bGZji/45NtCRVCCCGEEHnnk1wn9FMwcOBAfv755zSPdevWje+//z6XI8q+w2OayEx5IYQQopCR7vhCKiYmJt0nDhkaGmJmZpbLEWVdZpvzhRBCCJF/ZPbzW1pCCykzM7MCkWgKIYQQ4tMkY0KFEEIIIUSuk5ZQke/5/O8KWrr6eR2GEKKAWtou+2snCyE+HmkJFUIIIYQQuU6SUCGEEEIIkeskCS3gQkJCUKlUWX5caFb4+flRo0YNZdvLywsPD4+Pdj0hhBBCFH4yJlRk2aJFi5CVvYQQQgjxISQJFVlmZGSU1yEIIYQQooCT7vh8xtXVlaFDhzJ8+HCKFy+Oubk5K1eu5NmzZ/Tq1QsDAwMqVqzIzp070zw/KCgIY2NjtmzZgq2tLcWKFcPNzY07d+5kOoZZs2Zhbm6OgYEBffr04b///lM7/m53/IfGLIQQQohPjySh+dDq1asxNTUlLCyMoUOH8s0339CxY0caNGjAmTNn+Oyzz+jevTvPnz9P8/znz58zffp01qxZQ2hoKE+ePMHT0zNT1/7111/x8/NjxowZnDp1CgsLC5YtW/bRYwZISEggLi5O7SWEEEKIwkmS0HyoevXqTJgwAVtbW3x9fSlWrBimpqb069cPW1tbJk2axMOHD7lw4UKa57969YqlS5fi7OxM7dq1Wb16NUePHiUsLOy91164cCF9+vShT58+2NvbM23aNCpXrvzRYwaYOXMmRkZGysvS0vK91xVCCCFEwSRJaD7k6Oio/KyhoUGJEiWoVq2ass/c3Bx483z4tBQtWpQ6deoo25UqVcLY2JiIiIj3XjsiIoJ69eqp7XN2dv7oMQP4+voSGxurvLIyhEAIIYQQBYtMTMqHNDU11bZVKpXaPpVKBUBSUlKuxpWRnIhZW1sbbW3tjxOgEEIIIfIVaQkthF6/fs2pU6eU7StXrvDkyRMcHN7/6DoHBwdOnDihtu/48eM5HqMQQgghPm3SEloIaWpqMnToUBYvXkzRokUZMmQI9evXp27duu89d9iwYXh5eeHk5ISLiwvr1q3j0qVL2NjY5ELkQgghhPhUSEtoIaSrq8uYMWPo0qULLi4u6Ovrs3Hjxkyd27lzZyZOnMjo0aOpXbs2t2/f5ptvvvnIEQshhBDiU6NKlkffFCpBQUEMHz78oz7GM7fExcVhZGREv5/D0NLVz+twhBAF1NJ27x+KJITIOSmf37GxsRgaGqZbTlpChRBCCCFErpMxoZ+YKlWqcPv27TSPrVixgq5du+ZyRO8X4G6f4TcpIYQQQhQ80h3/ibl9+zavXr1K81jKozrzi8w25wshhBAi/8js57e0hH5irKys8joEIYQQQggZEyqEEEIIIXKftISKfK/R7INoFNPL6zCEyDfOTGyW1yEIIcQHk5ZQIYQQQgiR6yQJFUIIIYQQuU6S0ALK1dWV4cOH53UYQgghhBDZIkmo+OgkYRZCCCHEuyQJLYRevnyZ1yEIIYQQQmRIktAC4NmzZ/To0QN9fX0sLCyYN2+e2nFra2umTp1Kjx49MDQ0pH///gD88ccfVKlSBW1tbaytrdM97+uvv0ZPT48yZcrw3XffqZWJioqibdu26OvrY2hoSKdOnbh//75y3MvLCw8PD7Vzhg8fjqurq3L84MGDLFq0CJVKhUql4tatWznzxgghhBCiwJIktAAYNWoUBw8e5M8//2TPnj2EhIRw5swZtTIBAQFUr16ds2fPMnHiRE6fPk2nTp3w9PQkPDwcPz8/Jk6cSFBQkNp5c+fOVc4bO3Ysw4YNY+/evQAkJSXRtm1bHj16xMGDB9m7dy83btygc+fOmY590aJFODs7069fP6Kjo4mOjsbS0jLNsgkJCcTFxam9hBBCCFE4yTqh+Vx8fDw//vgjP//8M82bNwdg9erVlC1bVq1cs2bNGDlypLLdtWtXmjdvzsSJEwGws7Pj8uXLzJ07Fy8vL6Wci4sLY8eOVcqEhoayYMECWrZsSXBwMOHh4dy8eVNJHNesWUOVKlU4efIkderUeW/8RkZGaGlpoaurS6lSpTIsO3PmTPz9/d//pgghhBCiwJOW0Hzu+vXrvHz5knr16in7TExMsLe3Vyvn5OSkth0REYGLi4vaPhcXFyIjI0lMTFT2OTs7q5VxdnYmIiJCqcPS0lKt5bJy5coYGxsrZXKSr68vsbGxyuvOnTs5fg0hhBBC5A/SElpI6OnlzROFihQpQnJystq+V69eZasubW1ttLW1cyIsIYQQQuRz0hKaz1WoUAFNTU1OnDih7Hv8+DFXr17N8DwHBwdCQ0PV9oWGhmJnZ4eGhoay7/jx42pljh8/joODg1LHnTt31FokL1++zJMnT6hcuTIAJUuWJDo6Wq2Oc+fOqW1raWmptb4KIYQQQkgSms/p6+vTp08fRo0axf79+7l48SJeXl4UKZLxr27kyJEEBwczdepUrl69yurVq1m6dCk+Pj5q5UJDQ5kzZw5Xr17lu+++47fffmPYsGEAtGjRgmrVqtG1a1fOnDlDWFgYPXr0oEmTJkr3f7NmzTh16hRr1qwhMjKSyZMnc/HiRbVrWFtbc+LECW7dusWDBw9ISkrKwXdICCGEEAWRJKEFwNy5c2nUqBHu7u60aNGChg0bUrt27QzPqVWrFr/++isbNmygatWqTJo0iSlTpqhNSoI3yeqpU6eoWbMm06ZNY/78+bi5uQGgUqn4888/KV68OI0bN6ZFixbY2NiwceNG5Xw3NzcmTpzI6NGjqVOnDk+fPqVHjx5q1/Dx8UFDQ4PKlStTsmRJoqKicuaNEUIIIUSBpUp+d0Cf+GRYW1szfPjwfPs0o7i4OIyMjHActxWNYnkz5lWI/OjMxGZ5HYIQQqQr5fM7NjYWQ0PDdMtJS6gQQgghhMh1Mjte5HuHxzTJ8JuUEEIIIQoeSUI/YfL4TCGEEELkFemOF0IIIYQQuU6SUCGEEEIIkeukO17kez7/u4KWrn5ehyHER7O0nUNehyCEELlOWkKFEEIIIUSukyRUCCGEEELkOklCCxhXV9dcX1z+3WtaW1uzcOHCXI1BCCGEEIWLjAktxEJCQmjatCmPHz/G2Ng4x+o9efIkenryBCMhhBBCZJ8koSLLSpYsmdchCCGEEKKAk+74Amzt2rU4OTlhYGBAqVKl6NKlCzExMcCbheibNm0KQPHixVGpVHh5eb23zmfPntGjRw/09fWxsLBg3rx5qcq82x2vUqlYsWIFbdq0QVdXFwcHB44dO8a1a9dwdXVFT0+PBg0acP369Ry5byGEEEIUfJKEFmCvXr1i6tSpnD9/ni1btnDr1i0l0bS0tOSPP/4A4MqVK0RHR7No0aL31jlq1CgOHjzIn3/+yZ49ewgJCeHMmTPvPW/q1Kn06NGDc+fOUalSJbp06cKAAQPw9fXl1KlTJCcnM2TIkAzrSEhIIC4uTu0lhBBCiMJJuuMLsN69eys/29jYsHjxYurUqUN8fDz6+vqYmJgAYGZmlqkxofHx8fz444/8/PPPNG/eHIDVq1dTtmzZ957bq1cvOnXqBMCYMWNwdnZm4sSJuLm5ATBs2DB69eqVYR0zZ87E39//vdcSQgghRMEnLaEF2OnTp3F3d6dcuXIYGBjQpEkTAKKiorJV3/Xr13n58iX16tVT9pmYmGBvb//ecx0dHZWfzc3NAahWrZravv/++y/D1k1fX19iY2OV1507d7JzG0IIIYQoAKQltIB69uwZbm5uuLm5sW7dOkqWLElUVBRubm68fPky1+PR1NRUflapVOnuS0pKSrcObW1ttLW1P1KEQgghhMhPpCW0gPrrr794+PAhs2bNolGjRlSqVEmZlJRCS0sLgMTExEzVWaFCBTQ1NTlx4oSy7/Hjx1y9ejXnAhdCCCGEQJLQAqtcuXJoaWmxZMkSbty4wdatW5k6dapaGSsrK1QqFdu2bePff/8lPj4+wzr19fXp06cPo0aNYv/+/Vy8eBEvLy+KFJF/JkIIIYTIWZJdFFAlS5YkKCiI3377jcqVKzNr1iwCAgLUypQpUwZ/f3/Gjh2Lubn5e2enA8ydO5dGjRrh7u5OixYtaNiwIbVr1/5YtyGEEEKIT5QqOTk5Oa+DECItcXFxGBkZ0e/nMLR09fM6HCE+mqXtHPI6BCGEyDEpn9+xsbEYGhqmW05aQoUQQgghRK6T2fGfkKioKCpXrpzu8cuXL1OuXLlcjChzAtztM/wmJYQQQoiCR5LQT0jp0qU5d+5chseFEEIIIXKDJKGfkKJFi1KxYsW8DkMIIYQQQsaECiGEEEKI3CctoSLfazT7IBrF9PI6DJEDzkxsltchCCGEyCekJVQIIYQQQuQ6SUKFEEIIIUSukyQ0Ha6urgwfPjxTZa2trVm4cOFHjSezgoKCMDY2zvb5Xl5eeHh45Fg8QgghhBBpkSS0APsYye+iRYsICgrK0TqFEEIIId4lE5OEGiMjo7wOQQghhBCfgELREurq6srQoUMZPnw4xYsXx9zcnJUrV/Ls2TN69eqFgYEBFStWZOfOnco5Fy9e5PPPP0dfXx9zc3O6d+/OgwcPciSeJ0+e0LdvX0qWLImhoSHNmjXj/PnzynE/Pz9q1KjB2rVrsba2xsjICE9PT54+faqUefr0KV27dkVPTw8LCwsWLFigNkTA1dWV27dv8+2336JSqVCpVGox7N69GwcHB/T19WnVqhXR0dGZiv3d7nhXV1e8vb0ZPXo0JiYmlCpVCj8/v0zVlZycjJ+fH+XKlUNbW5vSpUvj7e2dqXOFEEIIUbgViiQUYPXq1ZiamhIWFsbQoUP55ptv6NixIw0aNODMmTN89tlndO/enefPn/PkyROaNWtGzZo1OXXqFLt27eL+/ft06tQpR2Lp2LEjMTEx7Ny5k9OnT1OrVi2aN2/Oo0ePlDLXr19ny5YtbNu2jW3btnHw4EFmzZqlHB8xYgShoaFs3bqVvXv3cvjwYc6cOaMc37RpE2XLlmXKlClER0erJZnPnz8nICCAtWvXcujQIaKiovDx8cn2/axevRo9PT1OnDjBnDlzmDJlCnv37n3veX/88QcLFixgxYoVREZGsmXLFqpVq5Zu+YSEBOLi4tReQgghhCicCk13fPXq1ZkwYQIAvr6+zJo1C1NTU/r16wfApEmTWL58ORcuXGDfvn3UrFmTGTNmKOf/9NNPWFpacvXqVezs7LIdx5EjRwgLCyMmJgZtbW0AAgIC2LJlC7///jv9+/cHICkpiaCgIAwMDADo3r07wcHBTJ8+nadPn7J69Wp++eUXmjdvDkBgYKDaYzVNTEzQ0NDAwMCAUqVKqcXw6tUrvv/+eypUqADAkCFDmDJlSrbvydHRkcmTJwNga2vL0qVLCQ4OpmXLlhmeFxUVRalSpWjRogWampqUK1eOunXrplt+5syZ+Pv7ZztOIYQQQhQchaYl1NHRUflZQ0ODEiVKqLW6mZubAxATE8P58+c5cOAA+vr6yqtSpUrAmxbKD3H+/Hni4+MpUaKEWv03b95Uq9va2lpJQAEsLCyIiYkB4MaNG7x69UotYTMyMsLe3j5TMejq6ioJ6Lt1Z8fb721W6uvYsSMvXrzAxsaGfv36sXnzZl6/fp1ueV9fX2JjY5XXnTt3sh2zEEIIIfK3QtMSqqmpqbatUqnU9qWMmUxKSiI+Ph53d3dmz56dqh4LC4sPiiM+Ph4LCwtCQkJSHXt76aS04k1KSvqga2dUd3Jyco7Wl5lYLS0tuXLlCvv27WPv3r0MGjSIuXPncvDgwVR1Amhrayutx0IIIYQo3ApNEpoVtWrV4o8//sDa2pqiRXP2LahVqxb//PMPRYsWxdraOlt12NjYoKmpycmTJylXrhwAsbGxXL16lcaNGyvltLS0SExMzImwPxodHR3c3d1xd3dn8ODBVKpUifDwcGrVqpXXoQkhhBAiDxWa7visGDx4MI8ePeLrr7/m5MmTXL9+nd27d9OrV68PTupatGiBs7MzHh4e7Nmzh1u3bnH06FHGjx/PqVOnMlWHgYEBPXv2ZNSoURw4cIBLly7Rp08fihQpojYL3tramkOHDnH37t0cm9mfk4KCgvjxxx+5ePEiN27c4Oeff0ZHRwcrK6u8Dk0IIYQQeSzLSejr169Zs2YN9+/f/xjx5IrSpUsTGhpKYmIin332GdWqVWP48OEYGxtTpMiH5eUqlYodO3bQuHFjevXqhZ2dHZ6enty+fVsZl5oZ8+fPx9nZmTZt2tCiRQtcXFxwcHCgWLFiSpkpU6Zw69YtKlSoQMmSJT8o7o/B2NiYlStX4uLigqOjI/v27eN///sfJUqUyOvQhBBCCJHHVMnZGCyoq6tLRESEtGjlomfPnlGmTBnmzZtHnz598jqcXBEXF4eRkRGO47aiUUwvr8MROeDMxGZ5HYIQQoiPLOXzOzY2FkNDw3TLZavZr27dupw7dy67sYlMOHv2LOvXr+f69eucOXOGrl27AtC2bds8jkwIIYQQ4sNla1bOoEGDGDFiBHfu3KF27dro6am3Ur27pE9BdvjwYT7//PN0j8fHx3+0awcEBHDlyhW0tLSoXbs2hw8fxtTU9IPq1NfXT/fYzp07adSoUabrWrduHQMGDEjzmJWVFZcuXcpyfGk5PKZJht+khBBCCFHwZKs7Pq1xkynLAKlUqnw/YzsrXrx4wd27d9M9XrFixVyM5sNdu3Yt3WNlypRBR0cn03U9ffo03bHBmpqaHzxcI7PN+UIIIYTIPzL7+Z2tltCbN29mO7CCRkdHp8AlmhnJyXsxMDBQW3BfCCGEECKzspWEyoQkIYQQQgjxIbK9UvvatWv5/vvvuXnzJseOHcPKyoqFCxdSvnx5mTwjcpTP/66gpZv+WFaRe5a2c8jrEIQQQhQS2Zodv3z5ckaMGEHr1q158uSJMgbU2NiYhQsX5mR8QgghhBCiEMpWErpkyRJWrlzJ+PHj0dDQUPY7OTkRHh6eY8EJIYQQQojCKVtJ6M2bN6lZs2aq/dra2jx79uyDgyoMXF1dGT58eK5e89atW6hUqo+yhmtISAgqlYonT57keN1CCCGE+PRkKwktX758monOrl27cHCQMWM5Ib8lfQ0aNCA6OhojI6O8DkUIIYQQhUC2JiaNGDGCwYMH899//5GcnExYWBjr169n5syZrFq1KqdjFPmAlpYWpUqVyuswhBBCCFFIZKsltG/fvsyePZsJEybw/PlzunTpwvLly1m0aBGenp45HWOB9fr1a4YMGYKRkRGmpqZMnDiRlGcDrF27FicnJwwMDChVqhRdunQhJiYGeNOt3rRpUwCKFy+OSqXCy8sLgKSkJObMmUPFihXR1tamXLlyTJ8+Xe26N27coGnTpujq6lK9enWOHTuWqXhv376Nu7s7xYsXR09PjypVqrBjxw4gdcusq6srKpUq1evWrVsAPHnyhL59+1KyZEkMDQ1p1qwZ58+f/5C3UwghhBCFSLaXaOratStdu3bl+fPnxMfHY2ZmlpNxFQqrV6+mT58+hIWFcerUKfr370+5cuXo168fr169YurUqdjb2xMTE8OIESPw8vJix44dWFpa8scff9ChQweuXLmCoaGh8iQjX19fVq5cyYIFC2jYsCHR0dH89ddfatcdP348AQEB2NraMn78eL7++muuXbtG0aIZ/7oHDx7My5cvOXToEHp6ely+fDndx3xu2rSJly9fqp176dIlzM3NAejYsSM6Ojrs3LkTIyMjVqxYQfPmzbl69SomJiZp1pmQkEBCQoKyHRcX9/43WQghhBAFUraS0GbNmrFp0yaMjY3R1dVFV1cXeJM0eHh4sH///hwNsqCytLRkwYIFqFQq7O3tCQ8PZ8GCBfTr14/evXsr5WxsbFi8eDF16tQhPj4efX19JVEzMzPD2NgYePOYzEWLFrF06VJ69uwJQIUKFWjYsKHadX18fPjiiy8A8Pf3p0qVKly7do1KlSplGG9UVBQdOnSgWrVqSlzpeTuRXLBgAfv37+fEiRPo6Ohw5MgRwsLCiImJQVtbG4CAgAC2bNnC77//Tv/+/dOsc+bMmfj7+2cYoxBCCCEKh2x1x4eEhKi1gqX477//OHz48AcHVVjUr18flUqlbDs7OxMZGUliYiKnT5/G3d2dcuXKYWBgQJMmTYA3iWB6IiIiSEhIoHnz5hle19HRUfnZwsICQOnqz4i3tzfTpk3DxcWFyZMnc+HChfees3PnTsaOHcvGjRuxs7MD4Pz588THx1OiRAn09fWV182bN7l+/Xq6dfn6+hIbG6u87ty5897rCyGEEKJgylJL6NtJyeXLl/nnn3+U7cTERHbt2kWZMmVyLrpC6r///sPNzQ03NzfWrVtHyZIliYqKws3NLc3kPkVKl/z7aGpqKj+nJMFJSUnvPa9v3764ubmxfft29uzZw8yZM5k3bx5Dhw5Ns/zly5fx9PRk1qxZfPbZZ8r++Ph4LCwsCAkJSXVOSqtuWrS1tZWWUyGEEEIUbllKQmvUqKFMQGnWrFmq4zo6OixZsiTHgivoTpw4obZ9/PhxbG1t+euvv3j48CGzZs3C0tISgFOnTqmV1dLSAlCeRgVga2uLjo4OwcHB9O3b96PEbGlpycCBAxk4cKAy/jStJPTBgwe4u7vToUMHvv32W7VjtWrV4p9//qFo0aJYW1t/lDiFEEIIUbBlKQm9efMmycnJ2NjYEBYWRsmSJZVjWlpamJmZqT1B6VMXFRXFiBEjGDBgAGfOnGHJkiXMmzePcuXKoaWlxZIlSxg4cCAXL15k6tSpaudaWVmhUqnYtm0brVu3RkdHB319fcaMGcPo0aPR0tLCxcWFf//9l0uXLtGnT58Pjnf48OF8/vnn2NnZ8fjxYw4cOJDuuq8dOnRAV1cXPz8/tRbxkiVL0qJFC5ydnfHw8GDOnDnY2dlx7949tm/fTrt27XBycvrgWIUQQghRsGUpCbWysgIy17UroEePHrx48YK6deuioaHBsGHD6N+/PyqViqCgIMaNG8fixYupVasWAQEBfPnll8q5ZcqUwd/fn7Fjx9KrVy969OhBUFAQEydOpGjRokyaNIl79+5hYWHBwIEDcyTexMREBg8ezN9//42hoSGtWrViwYIFaZY9dOgQ8P//JlLcvHkTa2trduzYwfjx4+nVqxf//vsvpUqVonHjxsrseSGEEEJ82lTJKQtXZtHatWv5/vvvuXnzJseOHcPKyooFCxZgY2ND27ZtczpO8QmKi4vDyMiIfj+HoaWb9lJRInctbSdPRBNCCJGxlM/v2NhYDA0N0y2Xrdnxy5cvZ8SIEbRu3ZonT54o4xaLFy/OwoULsxWwEEIIIYT4dGSrJbRy5crMmDEDDw8PDAwMOH/+PDY2Nly8eBFXV1cePHjwMWIVH+jzzz9PdwmtcePGMW7cuFyOKGOZ/SYlhBBCiPwjs5/f2Vqs/ubNm9SsWTPVfm1tbZ49e5adKkUuWLVqFS9evEjzWHpPMRJCCCGE+BiylYSWL1+ec+fOpZqUsmvXrnRnU4u8J2u4CiGEECK/yFYSOmLECAYPHsx///1HcnIyYWFhrF+/npkzZ7Jq1aqcjlEIIYQQQhQy2UpC+/bti46ODhMmTOD58+d06dKF0qVLs2jRIjw9PXM6RvGJazT7IBrF9PI6jHzpzMTUD40QQgghCoJsJaEAXbt2pWvXrjx//pz4+HjMzMxyMi4hhBBCCFGIZTsJTaGrq4uurm5OxCKEEEIIIT4R2Von9OHDhwwePJjKlStjamqKiYmJ2kuou3XrFiqVinPnzn30awUFBWFsbPzRryOEEEII8SGy1RLavXt3rl27Rp8+fTA3N0elUuV0XEIIIYQQohDLVhJ6+PBhjhw5QvXq1XM6HiGEEEII8QnIVnd8pUqV0l30PCt27dpFw4YNMTY2pkSJErRp04br168DEBISgkql4smTJ0r5c+fOoVKpuHXrlrJv5cqVWFpaoqurS7t27Zg/f36mu6OvX79O27ZtMTc3R19fnzp16rBv3z61MtbW1kydOpWvv/4aPT09ypQpw3fffadWRqVSsXz5cj7//HN0dHSwsbHh999/T/OaycnJVKxYkYCAALX9Kfd27dq198b95MkTBgwYgLm5OcWKFaNq1aps27ZNrczu3btxcHBAX1+fVq1aER0drRw7efIkLVu2xNTUFCMjI5o0acKZM2dS3dOqVato164durq62NrasnXrVrUyly5dok2bNhgaGmJgYECjRo2U3x+8WRzfwcGBYsWKUalSJZYtW/beexNCCCHEpyFbSeiyZcsYP348Bw8e5OHDh8TFxam9MuvZs2eMGDGCU6dOERwcTJEiRWjXrh1JSUmZOj80NJSBAwcybNgwzp07R8uWLZk+fXqmrx8fH0/r1q0JDg7m7NmztGrVCnd3d6KiotTKzZ07l+rVq3P27FnGjh3LsGHD2Lt3r1qZiRMn0qFDB86fP0/Xrl3x9PQkIiIi1TVVKhW9e/cmMDBQbX9gYCCNGzemYsWKGcaclJTE559/TmhoKD///DOXL19m1qxZaGhoKGWeP39OQEAAa9eu5dChQ0RFReHj46Mcf/r0KT179uTIkSMcP34cW1tbWrduzdOnT9Wu5e/vT6dOnbhw4QKtW7ema9euPHr0CIC7d+/SuHFjtLW12b9/P6dPn6Z37968fv0agHXr1jFp0iSmT59OREQEM2bMYOLEiaxevTrde0tISMj2vyUhhBBCFCzZenZ8ZGQkXbp0SdV6lpycjEqlIjExMVvBPHjwgJIlSxIeHs6DBw9o2rQpjx8/Vlo2z507R82aNbl58ybW1tZ4enoSHx+v1grYrVs3tm3bptaCmhVVq1Zl4MCBDBkyBHjTEurg4MDOnTuVMp6ensTFxbFjxw7gTWI5cOBAli9frpSpX78+tWrVYtmyZdy6dYvy5ctz9uxZatSowb179yhXrhxHjx6lbt26vHr1itKlSxMQEEDPnj0zjG/Pnj18/vnnREREYGdnl+p4UFAQvXr14tq1a1SoUAF486VhypQp/PPPP2nWmZSUhLGxMb/88gtt2rRR7mnChAlMnToVePOFQV9fn507d9KqVSvGjRvHhg0buHLlCpqamqnqrFixotKCnGLatGns2LGDo0ePphmHn58f/v7+qfY7jtsq64SmQ9YJFUIIkd9k9tnx2WoJ7dq1K5qamvzyyy8EBwezf/9+9u/fz4EDB9i/f3+m64mMjOTrr7/GxsYGQ0NDrK2tAVK1RKbnypUr1K1bV23fu9sZiY+Px8fHBwcHB4yNjdHX1yciIiLV9Z2dnVNtv9vKmZkyKUqXLs0XX3zBTz/9BMD//vc/EhIS6Nix43tjPnfuHGXLlk0zAU2hq6urJKAAFhYWxMTEKNv379+nX79+2NraYmRkhKGhIfHx8anu29HRUflZT08PQ0NDpZ5z587RqFGjNBPQZ8+ecf36dfr06YO+vr7ymjZtmlp3/bt8fX2JjY1VXnfu3Hnv+yGEEEKIgilbE5MuXrzI2bNnsbe3/6CLu7u7Y2VlxcqVKyldujRJSUlUrVqVly9foq+vD7xpXU3x6tWrD7reu3x8fNi7dy8BAQFUrFgRHR0dvvrqK16+fJmj10lL37596d69OwsWLCAwMJDOnTtnar1VHR2d95Z5NzFUqVRq72PPnj15+PAhixYtwsrKCm1tbZydnVPdd1r1pAyVyCiO+Ph44M143Xr16qkde3vYwLu0tbXR1tbO4M6EEEIIUVhkqyXUycnpg1upHj58yJUrV5gwYQLNmzfHwcGBx48fK8dLliwJoDah5t11Nu3t7Tl58qTavne3MxIaGoqXlxft2rWjWrVqlCpVSm3SU4rjx4+n2nZwcMhymbe1bt0aPT09li9fzq5du+jdu3emYnZ0dOTvv//m6tWrmSqfltDQULy9vWndujVVqlRBW1ubBw8eZKkOR0dHDh8+nOYXA3Nzc0qXLs2NGzeoWLGi2qt8+fLZjlsIIYQQhUe2WkKHDh3KsGHDGDVqFNWqVUvVYvZ2N256ihcvTokSJfjhhx+wsLAgKiqKsWPHKscrVqyIpaUlfn5+TJ8+natXrzJv3rxUcTRu3Jj58+fj7u7O/v372blzZ6bXLbW1tWXTpk24u7ujUqmYOHFimpOiQkNDmTNnDh4eHuzdu5fffvuN7du3q5X57bffcHJyomHDhqxbt46wsDB+/PHHdK+toaGBl5cXvr6+2NrapurOT0+TJk1o3LgxHTp0YP78+VSsWJG//voLlUpFq1atMn3fa9euxcnJibi4OEaNGpWpFta3DRkyhCVLluDp6Ymvry9GRkYcP36cunXrYm9vj7+/P97e3hgZGdGqVSsSEhI4deoUjx8/ZsSIEVm6lhBCCCEKn2y1hHbu3JmIiAh69+5NnTp1qFGjBjVr1lT+m6kLFynChg0bOH36NFWrVuXbb79l7ty5ynFNTU3Wr1/PX3/9haOjI7Nnz2batGlqdbi4uPD9998zf/58qlevzq5du/j2228pVqxYpmKYP38+xYsXp0GDBri7u+Pm5katWrVSlRs5ciSnTp2iZs2aTJs2jfnz5+Pm5qZWxt/fnw0bNuDo6MiaNWtYv349lStXzvD6ffr04eXLl/Tq1StT8ab4448/qFOnDl9//TWVK1dm9OjRWZoM9uOPP/L48WNq1apF9+7d8fb2xszMLEsxlChRgv379xMfH0+TJk2oXbs2K1euVL6Q9O3bl1WrVhEYGEi1atVo0qQJQUFB0hIqhBBCCCCbs+Nv376d4XErK6tsB/Sh+vXrx19//cXhw4dzpD5ra2uGDx/O8OHD0y2jUqnYvHkzHh4eWar78OHDNG/enDt37mBubv5hgRZCKbPrZHZ8+mR2vBBCiPwms7Pjs9Udn5dJ5rsCAgJo2bIlenp67Ny5k9WrV+f7RdETEhL4999/8fPzo2PHjpKACiGEEOKTk60kNMXly5eJiopKNav6yy+//KCgsiIsLIw5c+bw9OlTbGxsWLx4MX379gWgSpUq6bbarlixgq5du+ZanG9bv349ffr0oUaNGqxZs0bt2Lp16xgwYECa51lZWXHp0qXcCDFfOTymSYbfpIQQQghR8GSrO/7GjRu0a9eO8PBwteV/UiYEZXex+px2+/btdJd1Mjc3x8DAIJcjer+nT59y//79NI9pamrmq1bojy2zzflCCCGEyD8+anf8sGHDKF++PMHBwZQvX56wsDAePnzIyJEjUz0TPS8VxITNwMAgXybHQgghhBA5KVtJ6LFjx9i/fz+mpqYUKVKEIkWK0LBhQ2bOnIm3tzdnz57N6TiFEEIIIUQhkq0kNDExUWmtMzU15d69e9jb22NlZcWVK1dyNEAhGs0+KLPj3yGz4oUQQhR02UpCq1atyvnz5ylfvjz16tVjzpw5aGlp8cMPP2BjY5PTMQohhBBCiEImW0nohAkTePbsGQBTpkyhTZs2NGrUiBIlSrBx48YcDVAIIYQQQhQ+2XpikpubG+3btwdQHhv54MEDYmJiaNZMuglzi5+fHzVq1MjrMID8FYsQQggh8r8sJ6GvXr2iaNGiXLx4UW2/iYlJpp/ZLgo2lUrFli1b1Pb5+PgQHBycNwEJIYQQosDJcne8pqYm5cqVyzdrgYqckZiYiEqlokiRbDWOo6+vj76+fg5HJYQQQojCKlsZx/jx4xk3bhyPHj3K6XgKNFdXV4YOHcrw4cMpXrw45ubmrFy5kmfPntGrVy8MDAyoWLEiO3fuBN4kfn369KF8+fLo6Ohgb2/PokWL1OoMCQmhbt266OnpYWxsjIuLS7pPgbp+/To2NjYMGTKE9z2DICgoCGNjY7Zu3UrlypXR1tYmKiqKkydP0rJlS0xNTTEyMqJJkyacOXNGOc/a2hqAdu3aoVKplO13u+OTkpKYMmUKZcuWRVtbmxo1arBr164svqNCCCGEKKyylYQuXbqUQ4cOUbp0aezt7alVq5ba61O2evVqTE1NCQsLY+jQoXzzzTd07NiRBg0acObMGT777DO6d+/O8+fPSUpKomzZsvz2229cvnyZSZMmMW7cOH799VcAXr9+jYeHB02aNOHChQscO3aM/v37pzns4cKFCzRs2JAuXbqwdOnSTA2NeP78ObNnz2bVqlVcunQJMzMznj59Ss+ePTly5AjHjx/H1taW1q1b8/TpUwBOnjwJQGBgINHR0cr2uxYtWsS8efMICAjgwoULuLm58eWXXxIZGZluPAkJCcTFxam9hBBCCFE4ZWt2vIeHRw6HUXhUr16dCRMmAODr68usWbMwNTWlX79+AEyaNInly5dz4cIF6tevj7+/v3Ju+fLlOXbsGL/++iudOnUiLi6O2NhY2rRpQ4UKFQBwcHBIdc2jR4/Spk0bxo8fz8iRIzMd66tXr1i2bBnVq1dX9r07seyHH37A2NiYgwcP0qZNG0qWLAmAsbExpUqVSrfugIAAxowZg6enJwCzZ8/mwIEDLFy4kO+++y7Nc2bOnKn2fgghhBCi8MpWEjp58uScjqPQcHR0VH7W0NCgRIkSVKtWTdlnbm4OQExMDADfffcdP/30E1FRUbx48YKXL18q3domJiZ4eXnh5uZGy5YtadGiBZ06dcLCwkKpLyoqipYtWzJ9+nSGDx+epVi1tLTU4gW4f/8+EyZMICQkhJiYGBITE3n+/DlRUVGZrjcuLo579+7h4uKitt/FxYXz58+ne56vry8jRoxQq8fS0jLT1xVCCCFEwZG9WSgiXZqammrbKpVKbV9KN3lSUhIbNmzAx8eHPn36sGfPHs6dO0evXr14+fKlUj4wMJBjx47RoEEDNm7ciJ2dHcePH1eOlyxZkrp167J+/fosd1/r6Oik6rbv2bMn586dY9GiRRw9epRz585RokQJtZg+Fm1tbQwNDdVeQgghhCicspWEJiYmEhAQQN26dSlVqhQmJiZqL5E5oaGhNGjQgEGDBlGzZk0qVqzI9evXU5WrWbMmvr6+HD16lKpVq/LLL78ox3R0dNi2bRvFihXDzc1NGbv5ITF5e3vTunVrqlSpgra2Ng8ePFAro6mpmeHqCIaGhpQuXZrQ0NBUdVeuXPmD4hNCCCFE4ZCtJNTf35/58+fTuXNnYmNjGTFiBO3bt6dIkSL4+fnlcIiFl62tLadOnWL37t1cvXqViRMnqk30uXnzJr6+vhw7dozbt2+zZ88eIiMjU40L1dPTY/v27RQtWpTPP/+c+Pj4D4pp7dq1REREcOLECbp27YqOjo5aGWtra4KDg/nnn394/PhxmvWMGjWK2bNns3HjRq5cucLYsWM5d+4cw4YNy3ZsQgghhCg8spWErlu3jpUrVzJy5EiKFi3K119/zapVq5g0aZJaV7HI2IABA2jfvj2dO3emXr16PHz4kEGDBinHdXV1+euvv+jQoQN2dnb079+fwYMHM2DAgFR16evrs3PnTpKTk/niiy+Ux6pm1Y8//sjjx4+pVasW3bt3x9vbGzMzM7Uy8+bNY+/evVhaWlKzZs006/H29mbEiBGMHDmSatWqsWvXLrZu3YqtrW224hJCCCFE4aJKft+CkmnQ09MjIiKCcuXKYWFhwfbt26lVqxY3btygZs2axMbGfoxYxScmLi4OIyMjHMdtRaOYXl6Hk6+cmSiPxxVCCJE/pXx+x8bGZji/I1stoWXLliU6OhqAChUqsGfPHuDNGpLa2trZqVIIIYQQQnxCsrVEU7t27QgODqZevXoMHTqUbt268eOPPxIVFcW3336b0zGKbPj88885fPhwmsfGjRvHuHHjcjmi7Ds8ponMlBdCCCEKmWx1x7/r2LFjHDt2DFtbW9zd3XMiLvGB7t69y4sXL9I8VlBWMchsc74QQggh8o/Mfn7nSBIqxMcgSagQQghR8GT28ztb3fEAV65cYcmSJURERABvHic5dOhQ7O3ts1ulEEIIIYT4RGQrCf3jjz/w9PTEyckJZ2dnAI4fP07VqlXZsGEDHTp0yNEgxafN539X0NLVz+swctXSdg7vLySEEEIUYNlKQkePHo2vry9TpkxR2z958mRGjx4tSagQQgghhMhQtpZoio6OpkePHqn2d+vWTVm6SQghhBBCiPRkKwl1dXVNc/mfI0eO0KhRow8OSnw4V1dXhg8fnuvXtba2ZuHChbl+XSGEEEIULNnqjv/yyy8ZM2YMp0+fpn79+sCbMaG//fYb/v7+bN26Va2sEEIIIYQQb8tWEpryfPNly5axbNmyNI8BqFQqEhMTPyA8IYQQQghRGGWrOz4pKSlTL0lA81ZSUhKjR4/GxMSEUqVK4efnpxx78uQJffv2pWTJkhgaGtKsWTPOnz+vHL9+/Tpt27bF3NwcfX196tSpw759+9Tqj4mJwd3dHR0dHcqXL8+6devUjicnJ+Pn50e5cuXQ1tamdOnSeHt7f9R7FkIIIUTBkOUk9NWrVzRv3pzIyMiPEY/IQatXr0ZPT48TJ04wZ84cpkyZwt69ewHo2LEjMTEx7Ny5k9OnT1OrVi2aN2/Oo0ePAIiPj6d169YEBwdz9uxZWrVqhbu7O1FRUUr9Xl5e3LlzhwMHDvD777+zbNkyYmJilON//PEHCxYsYMWKFURGRrJlyxaqVauWbrwJCQnExcWpvYQQQghROGW5O15TU5MLFy58jFhEDnN0dGTy5MkA2NrasnTpUoKDg9HR0SEsLIyYmBi0tbUBCAgIYMuWLfz+++/079+f6tWrU716daWuqVOnsnnzZrZu3cqQIUO4evUqO3fuJCwsjDp16gDw448/4uDw/+tbRkVFUapUKVq0aIGmpiblypWjbt266cY7c+ZM/P39P8ZbIYQQQoh8Jlvd8d26dePHH3/M6VhEDnN0dFTbtrCwICYmhvPnzxMfH0+JEiXQ19dXXjdv3uT69evAm5ZQHx8fHBwcMDY2Rl9fn4iICKUlNCIigqJFi1K7dm2l/kqVKmFsbKxsd+zYkRcvXmBjY0O/fv3YvHkzr1+/TjdeX19fYmNjldedO3dy8N0QQgghRH6SrYlJr1+/5qeffmLfvn3Url0bPT09tePz58/PkeDEh9HU1FTbVqlUJCUlER8fj4WFBSEhIanOSUkifXx82Lt3LwEBAVSsWBEdHR2++uorXr58menrW1pacuXKFfbt28fevXsZNGgQc+fO5eDBg6liA9DW1lZaZoUQQghRuGUrCb148SK1atUC4OrVq2rHVCrVh0clPqpatWrxzz//ULRoUaytrdMsExoaipeXF+3atQPetIzeunVLOV6pUiVev37N6dOnle74K1eu8OTJE7V6dHR0cHd3x93dncGDB1OpUiXCw8OVfz9CCCGE+DRlKwk9cOBATschclGLFi1wdnbGw8ODOXPmYGdnx71799i+fTvt2rXDyckJW1tbNm3ahLu7OyqViokTJ5KUlKTUYW9vT6tWrRgwYADLly+naNGiDB8+HB0dHaVMUFAQiYmJ1KtXD11dXX7++Wd0dHSwsrLKi9sWQgghRD6SrTGhKa5du8bu3bt58eIF8GZJHpH/qVQqduzYQePGjenVqxd2dnZ4enpy+/ZtzM3NgTdDKooXL06DBg1wd3fHzc0tVetlYGAgpUuXpkmTJrRv357+/ftjZmamHDc2NmblypW4uLjg6OjIvn37+N///keJEiVy9X6FEEIIkf+okrOROT58+JBOnTpx4MABVCoVkZGR2NjY0Lt3b4oXL868efM+RqziExMXF4eRkRH9fg5DS1c/r8PJVUvbOby/kBBCCJEPpXx+x8bGYmhomG65bHXHf/vtt2hqahIVFaW2JE/nzp0ZMWKEJKFCCPGJevHiBffv3yc5OVl6x4QohFQqFSqVCnNzc7UheNmRrSR0z5497N69m7Jly6rtt7W15fbt2x8UkBDvCnC3z/CblBAif3jx4gV3797FwMCAIkU+aLSXECIfS0pK4u7du5QpU+aDEtFs/ZV49uwZurq6qfY/evRIltgRQohP1P379yUBFeITUKRIEQwMDLh///6H1ZOdkxo1asSaNWuU7ZT1J+fMmUPTpk0/KCAhhBAFU3JysiSgQnwiihQp8sFDbrLVHT9nzhyaN2/OqVOnePnyJaNHj+bSpUs8evSI0NDQDwpICCFEwSRjQIX4tORJElq1alWuXr3K0qVLMTAwID4+nvbt2zN48GAsLCw+KCAh3uXzvyuFana8zHwXQgghspmEAhgZGTF+/PicjEUIIYQQWWRmZkZQUBCtW7fO0Xo9PDyoWrUq06ZNA6B27dr079+fAQMG5Oh10rqW+DRkOwl9/PgxP/74IxEREQBUrlyZXr16YWJikmPBCSGEEJ+qoUOHsnHjRgCKFi2KsbExlStXpn379nh6eirjb8PDwzE2Ns5UnVlJWAMDA9HU1Mx2/GkJDQ2lXbt2REZGYmRk9FGvJfK/bI0gP3ToENbW1ixevJjHjx/z+PFjFi9eTPny5Tl06FBOxyhySFBQUKb/UH0oLy8vPDw8cuVaQghRWDVr1ozw8HBOnz7Nhg0baNiwIePHj6dr1668fv0aAHNz8xxdmebly5cAFC9eHH393BkKlZvXEvlHtpLQwYMH07lzZ27evMmmTZvYtGkTN27cwNPTk8GDB+d0jIXGrVu3UKlUnDt3Tm1/QU7Y0rsnIYQQH05LSwtzc3MsLCxwdHRk+PDhrFmzhuDgYDZs2AC8ad3csWMH8CaBHDt2LFWrVsXS0pJatWqxaNEi4E13Orz5zDEzM1O2U1a2+fnnn3FycsLS0hJ400U+YcIEtXji4+MZMGAA1tbWODo68uOPPyrHoqKiMDMzIzw8XNkXGxuLmZkZoaGhREVF0a5dO+DNuuJmZmYMHTo0zWs9efKEwYMHY2tri5WVFZ6enty4cUM5vmHDBipWrMj+/ftxcXHB2tqazp07qy0ZFBoaipubG9bW1lSsWJEvvviCO3fufMivQ+SwbCWh165dY+TIkWhoaCj7NDQ0GDFiBNeuXcux4IQQQgihrlGjRlSpUoXt27enOrZy5Up2797NqlWrOHr0KMuWLVOSyt27dwOwePFiwsPDlW2Amzdvsm3bNgIDA9m/f3+61/7uu++oUqUKwcHBeHt7M2HCBEJCQjIVd5kyZfjpp58AOHbsGOHh4UyfPj3Nst7e3pw/f561a9eyfft2kpOT+frrr3n16pVS5sWLFyxbtozvvvuOrVu3cvfuXSZPngzA69ev6dmzJ87Ozhw4cIAdO3bQvXt3VCpVpmIVuSNbSWitWrWUsaBvi4iIoHr16h8cVEG2a9cuGjZsiLGxMSVKlKBNmzZcv34dgPLlywNQs2ZNVCoVrq6u+Pn5sXr1av7880/lUVghISFKC+OmTZto2rQpurq6VK9enWPHjmU6lqCgIMqVK4euri7t2rXj4cOHqcr8+eef1KpVi2LFimFjY4O/v7/SxQNv1oBdvnw5n3/+OTo6OtjY2PD7778rx9O6p7cFBARgYWFBiRIlGDx4sNofECGEENlja2ubZqve3bt3sbGxoV69elhaWlK/fn3at28PgKmpKQCGhoaYm5sr2wCvXr1i6dKlVKtWjSpVqqR73bp16+Lt7U2FChXo27cv7u7urFixIlMxa2hoULx4cSUWc3PzNJ+Gd+PGDXbt2sX8+fOpX78+VatWZfny5fzzzz/s3LlTLea5c+dSo0YNHB0d6d27N4cPHwbg6dOnxMXF8dlnn1G+fHns7Ozw9PRM9aRHkbeylYR6e3szbNgwAgICOHLkCEeOHCEgIIBvv/2Wb7/9lgsXLiivT82zZ88YMWIEp06dIjg4mCJFitCuXTuSkpIICwsDYN++fURHR7Np0yZ8fHzo1KkTrVq1Ijo6mujoaBo0aKDUN378eHx8fDh37hx2dnZ8/fXXakliek6cOEGfPn0YMmQI586do2nTpqlmHR4+fJgePXowbNgwLl++zIoVKwgKCkr1zXTixIl06NCB8+fP07VrVzw9PZUvIWndU4oDBw5w/fp1Dhw4wOrVqwkKCiIoKCjdmBMSEoiLi1N7CSGESC05OTnNVj1PT08uXryIs7Mz48aN48CBA5mqr2zZsmpJaXqcnJxSbUdGRmYu6Ey6evUqRYsWVYYLAJiYmFChQgWuXr2q7NPV1VUaQuDN2NgHDx4Ab8aYenp60rlzZ7p168YPP/zwwU/3ETkvW7Pjv/76awBGjx6d5jGVSqX8D5KYmPhhERYwHTp0UNv+6aefKFmyJJcvX6ZkyZIAlChRglKlSilldHR0SEhIUNuXwsfHhy+++AIAf39/qlSpwrVr16hUqVKGcSxatIhWrVopvyM7OzuOHj3Krl27lDL+/v6MHTuWnj17AmBjY8PUqVMZPXq00qUB0LFjR/r27QvA1KlT2bt3L0uWLGHZsmXp3hO8+SOwdOlSNDQ0qFSpEl988QXBwcH069cvzZhnzpyJv79/hvclhBDiTaJWrly5VPsdHR2VRpBDhw7Rr18/GjdurHSDpyetR3FnVVpPy/qYvV9Fi6qnMCm5R4rFixfTr18/9u/fz5YtW5g5cya//fZbqkRa5J1stYTevHkzw9eNGzeU/35qIiMj+frrr7GxscHQ0BBra2vgzYDt7HB0dFR+TnkQQExMzHvPi4iIoF69emr7nJ2d1bbPnz/PlClT0NfXV179+vUjOjqa58+fp3ues7NzmsMx3lWlShW1ccMWFhYZxu7r60tsbKzykgHkQgiR2uHDh4mIiKBNmzZpHjcwMMDDw4P58+fzww8/sG3bNh4/fgyApqbmBzUOnT59OtW2ra0t8KYxAlBrcbx48aJa+ZRlmDKKwc7OjtevX6td69GjR1y/fh17e/ssxVutWjWGDRvGjh07qFSpklpvnch72WoJNTU1RU9PL6djKRTc3d2xsrJi5cqVlC5dmqSkJKpWraoseZFVb6+bltL1kpSUlCOxxsfH4+/vr4wXeluxYsU+uP5313xTqVQZxq6trZ2jy4wIIURB9/LlS+7fv09SUhL//vsv+/fvZ9GiRXz22Wd06tQpVfnly5djbm5OtWrVKFKkCP/73/8wMzNT1uS0tLTk8OHD1K1bF21t7Swv2xcWFsaSJUto3bo1ISEhbN26lXXr1gFvevVq167N4sWLKVeuHA8ePGDWrFlq51taWqJSqdizZw8tWrSgWLFiqZZmsrGxoVWrVowcOZK5c+eir6/PtGnTKFWqFK1atcpUnLdv32bt2rW4ublRqlQprl27xs2bN9N8z0TeyVZLqLm5Ob179+bIkSM5HU+B9vDhQ65cucKECRNo3rw5Dg4OyrdPeLPUBqT+BqilpZXjwxYcHBw4ceKE2r7jx4+rbdeqVYsrV65QsWLFVK+3u1XePe/48eM4ODgosUPG32qFEEJkz/79+6lWrRq1a9fG09OTI0eOMGPGDNasWaPW05RCX1+fpUuX0rJlSz777DOioqJYv3698jfd39+fgwcPUrNmTZo3b57leL755hvOnz9P8+bNWbBgAVOmTKFZs2bK8UWLFvH69WtatmzJhAkTGDt2rNr5FhYWjB49mmnTplGlShV8fX3TvM7ixYtxdHSkW7dufPHFFyQnJ7N+/fpML2ivo6NDZGQkvXv3xtnZGR8fH3r16qUMPxP5gyo5G0+f37JlC0FBQezYsQNra2t69+5Njx49KF269MeIscBISkrCzMyMzz//nMmTJxMVFcXYsWM5efIkmzdvpk2bNhgaGjJ+/Hj69u1LsWLFMDIyYsaMGaxYsYI9e/ZQokQJjIyMuHv3LuXLl+fs2bPUqFEDeLNuWvHixTlw4ECqWejvOn78OC4uLsyePZu2bduye/duJk6cSHJyMk+ePAHeLNfRpk0bJkyYwFdffUWRIkU4f/48Fy9eVCYxqVQqTE1NmT17Ng0bNmTdunVMmzaN8PBwKleuzOvXr9O8Jy8vL548ecKWLVuUmIYPH865c+cyvZxHXFwcRkZG9Ps5TJ4dL0QBcOPGDQwMDPI6DCFELnn69Ck2Njap9qd8fsfGxqa5AkKKbLWEenh4sGXLFu7evcvAgQP55ZdfsLKyok2bNmzatClTs7cLoyJFirBhwwZOnz5N1apV+fbbb5k7d65yvGjRoixevJgVK1ZQunRp2rZtC0C/fv2wt7fHycmJkiVLEhoa+sGx1K9fn5UrV7Jo0SKqV6/Onj17Ui067ObmxrZt29izZw916tShfv36LFiwACsrK7Vy/v7+bNiwAUdHR9asWcP69eupXLlyhvckhBBCCJGRbLWEpmXJkiWMGjWKly9fYmpqysCBAxk7dmyOzLgTeUelUrF58+Y8eaKTtIQKUbBIS6gQn5YPbQnN1sSkFPfv31fWf7x9+zZfffUVffr04e+//2b27NkcP36cPXv2fMglhBBCCCFEIZStJHTTpk0EBgaye/duKleuzKBBg+jWrZvaLLsGDRook1dEzvv888+VJ0O8a9y4cYwbNy6XI/p4AtztM/wmJYQQQoiCJ1tJaK9evfD09CQ0NJQ6deqkWaZ06dKMHz/+g4IT6Vu1ahUvXrxI85iJiUmOXSeHRmsIIYQQQqjJUhKa8hjFv/76S1knNK1HKxoaGqKjo6P21B2Rs8qUKZPXIQghhBBCZFuWklBjY+M0n1Wb4lN9VKcQQgghhMiaLCWhBw4cUH5OTk6mdevWrFq1SlrlxEfl878r+WZ2vMxsF0IIIXJGlpLQJk2aqG1raGhQv379NKfnCyGEEEIIkZ5sLVYvhBBCiNRq167NihUrlO379+/z1VdfYW1tTcWKFfMwsqzbsGHDR4k5KioKMzMzwsPDAQgNDcXMzIzY2NiPfi2Rv3zQOqEia1xdXalRowYLFy7M1etaW1szfPhwhg8fnq3z316w/tatW6keJyqEEBlx+z53E4DdA6tlqbyHhwdVq1ZVHlecYsOGDUyYMIFr165l/tq7d6s9pGXFihXExMSwf//+fLOQv5mZmfKzrq4u5ubm1K1bl759+1K9enXlWNu2bTP9fPmsvFdlypQhPDycEiVKZD34DAwdOpTY2FjWrFnz0a8lcsYHt4RmNFFJFD6WlpZER0dTtWrVvA5FCCHyHVNTU7Uk9NatWzg6OmJjY0PJkiWzVefLly9zKjzF4sWLCQ8P59ChQ8yaNYtnz57RqlUrNm7cqJTR0dHJdszpefnyJRoaGpibm1O06MdvB8vNa4msy1IS2r59e7XXf//9x8CBA1PtF4WXhoYGpUqVkv+hhRCfnKFDh9KjRw++++47qlatir29PWPGjOHVq1dKmbe742vXrs22bdv49ddfMTMzY+jQoQD8/fff9OjRA2tra2xsbOjbty8xMTFKHXPmzKFp06b8/PPPODk5YWlpCbxpwVy9ejVdu3bFysoKFxcXTp48yY0bN/Dw8MDa2prWrVtz8+bN996LoaEh5ubmlCtXjqZNm/LTTz/RoUMHfH19efLkCZC6O/7ixYu0a9eO8uXLY2NjQ4sWLTh37hyhoaF4e3sTFxeHmZkZZmZmzJkzR3kP5s2bx+DBg7GxsWHkyJHpdpGHhYXRpEkTLC0t+fzzz4mIiEj1nrxtxYoV1K5dWzm+ceNGdu3apcQQGhqa5rWOHj2Km5sbZcuWpWrVqkydOpXXr18rxz08PBg3bhz+/v7Y2dlRpUoV5X5EzspSEmpkZKT26tatG6VLl061X6QvKSmJ0aNHY2JiQqlSpfDz81OOPXnyhL59+1KyZEkMDQ1p1qwZ58+fV45fv36dtm3bYm5ujr6+PnXq1GHfvn1q9cfExODu7o6Ojg7ly5dn3bp1WYovMjKSxo0bU6xYMSpXrszevXvVjt+6dQuVSsW5c+cACAkJQaVSsXv3bmrWrImOjg7NmjUjJiaGnTt34uDggKGhIV26dOH58+dZe7OEECKfCQ0N5datW2zevJklS5awceNGNmzYkGbZ3bt306xZM9q2bUt4eDjTp08nKSmJHj168PjxY/78809+++03bt++Tf/+/dXOvXnzJtu2bSMwMJD9+/cr++fPn0+nTp3Yv38/FStW5JtvvmHUqFF4e3uzZ88ekpOT8fX1zda9DRgwgPj4eA4ePJjm8UGDBmFhYcGePXvYt28f3t7eFC1alDp16jBt2jQMDAwIDw8nPDycQYMGKectW7aMKlWqEBwczIgRI9K9vr+/P/7+/uzevZsSJUrQvXt3tQQ/I4MGDaJt27Y0a9ZMiSGth+lER0fTpUsXatSowYEDB5gzZw6//PIL8+fPVyu3ceNGdHV12bVrF5MmTWLevHmEhIRkKhaReVlqzgoMDPxYcXwyVq9ezYgRIzhx4gTHjh3Dy8sLFxcXWrZsSceOHdHR0WHnzp0YGRmxYsUKmjdvztWrVzExMSE+Pp7WrVszffp0tLW1WbNmDe7u7ly5coVy5coB4OXlxb179zhw4ACampp4e3urfcPOSFJSEu3bt8fc3JwTJ04QGxub6XGkfn5+LF26FF1dXTp16kSnTp3Q1tbml19+IT4+nnbt2rFkyRLGjBmTbh0JCQkkJCQo22k9CEEIIfKSsbExs2bNQkNDA1tbW1q0aMHhw4fp3r17qrKmpqZoaWlRrFgxzM3NgTdf3CMiIjh16pSyvOHSpUtp1KgRZ8+epWbNmgC8evWKpUuXYmpqqlbn119/Tdu2bYE3LbOtW7dmxIgRNGvWDID+/fszbNiwbN2bra0t8GYyT1r+/vtvBg0apJR7e2UcQ0NDVCqVcp9va9iwoVpSml79Pj4+uLq6ArBkyRJq1KjBjh07lPvNiL6+PsWKFSMhISHNGFIEBgZSunRpZs2ahUqlwtbWln/++YepU6fi4+NDkSJv2uYqV67MqFGjlPv86aefOHz4sBKfyBkyOz6XOTo6MnnyZGxtbenRowdOTk4EBwdz5MgRwsLC+O2333BycsLW1paAgACMjY35/fffAahevToDBgygatWq2NraMnXqVCpUqMDWrVsBuHr1Kjt37mTlypXUr1+f2rVr8+OPP6b7eM937du3j7/++os1a9ZQvXp1GjduzIwZMzJ17rRp03BxcaFmzZr06dOHgwcPsnz5cmrWrEmjRo346quv1NaZTcvMmTPVWtRTuqCEECK/sLe3R0NDQ9k2NzfnwYMHmT4/MjKSMmXKqK2vbW9vj5GREVevXlX2lS1bNlUCCm+SoxQp4zUdHBzU9v333388ffo00zGlSHlMc3pzPQYOHMiIESPo0KEDixcvzlS3P5DpSaxOTk7Kz8WLF6dChQpq70lOuHr1Kk5OTmr3WLduXZ49e8a9e/eUfW+/z5D137PIHElCc5mjo6PatoWFBTExMZw/f574+HhKlCiBvr6+8rp58ybXr18HID4+Hh8fHxwcHDA2NkZfX5+IiAjlW2VERARFixZVxsgAVKpUCWNj40zFFhERgaWlJaVLl1b2OTs7Z/m+zM3N0dXVVfuWbG5u/t4WWV9fX2JjY5XXnTt3MnVtIYT4EAYGBmn2vMTGxmJoaKi2793x8CqViqSkpByP6e3JTeldPyWRSmtfdmKKjIwEwMrKKs3jo0eP5vDhw7Rs2ZLDhw/TqFEjtm/f/t5607uXrChSpIiSJKfIbFd9dmhqaqba9zF+z586mV2Sy979h53yByw+Ph4LC4s0x5ykJJE+Pj7s3buXgIAAKlasiI6ODl999dVHmTmZVW/fl0qlSvc+M6KtrY22tvZHiU8IIdJToUKFNP/2XrhwIccfxmJra8vdu3e5e/eu0hp65coVYmNjsbe3z9FrZdWKFSswMDCgcePG6ZapUKECFSpUYODAgQwYMIANGzbwxRdfoKmp+cGP7D59+jRly5YF3syRuHHjBnZ2dgCUKFGCmJgY5fHg8Gai1Nu0tLTe+zljZ2fHtm3b1OoJCwtDX19frQFG5A5pCc0natWqxT///EPRokWpWLGi2iulSyY0NBQvLy/atWtHtWrVKFWqFLdu3VLqqFSpEq9fv+b06dPKvitXrigzHd/HwcGBO3fuEB0drew7fvx4jtyfEELkV15eXty4cYNx48Zx6dIlrl27xvLly9m8ebPaWMac0KRJExwcHPjmm2+4cOECZ86cYciQITRo0CBX116Oi4vj/v373Llzh5CQEHr37s2mTZuYM2dOmhOMX7x4wdixYwkNDeXOnTucOHGCs2fPKuNDLS0tefbsGYcOHeLhw4fZmog6b948Dh06REREBN7e3piYmPD5558D4OLiwsOHD1myZAk3b97kxx9/VJuwlRLD5cuXuXbtGg8fPkyzpbRXr17cu3cPX19fIiMj2blzJ3PnzmXgwIHKeFCRe+QdzydatGiBs7MzHh4e7Nmzh1u3bnH06FHGjx/PqVOngDffoDdt2sS5c+c4f/48Xbp0UfvWZ29vT6tWrRgwYAAnTpzg9OnT9O3bFx0dnUzHYGdnR8+ePTl//jyHDx9m/PjxH+V+hRAiv7C2tubPP/8kMjKSjh070qpVK7Zu3cqqVauUCT85RaVSsWbNGoyNjfnyyy/56quvsLKy4ocffsjR67yPt7c31apVw8XFhdGjR6Onp8fu3bvp0KFDmuU1NDR4/PgxQ4YMwdnZmX79+tG8eXNGjx4NvBlX2bNnT/r374+DgwNLly7NckwTJkxgwoQJtGzZkpiYGNauXYuWlhbwpgVz9uzZBAYG0rRpU86ePZvqC0K3bt2oUKECLVu2xMHBgbCwsFTXsLCw4JdffuHs2bM0bdqUUaNG0aVLlwxn7YuPR5X87iAL8dGk9cQkDw8PjI2NCQoK4unTp4wfP54//viDf//9l1KlStG4cWNmzpyJpaUlt27donfv3hw/fhxTU1PGjBnDb7/9plbnP//8Q9++fdm3bx/m5uZMmzaNiRMnZvqJSVevXqVPnz6EhYVhbW3N4sWLadWqVbpPTAoJCaFp06Y8fvxYGTYQFBTE8OHD1Vpg/fz82LJli7K0U2bExcVhZGREv5/D0NLVz/R5H9PSdg7vLyTEJ+rGjRv55qlAQoiP7+nTp2kOWUn5/E5rXPXbJAkV+ZYkoUIULJKECvFp+dAkVLrjhRBCCCFErpPZ8Z+QdevWMWDAgDSPWVlZcenSpVyOKHMC3O0z/CYlhBBCiIJHktBPyJdffkm9evXSPJbWmmhCCCGEEB+LJKGfEAMDAxmvJYQQQoh8QcaECiGEEEKIXCctoSLf8/nflXwxO15mxgshhBA5R1pChRBCCCFErpMkVAghhBBC5DpJQt/h6uqaqScLZVVQUJDyRKH0+Pn5qT072MvLCw8PjxyPJbtUKhVbtmzJ6zCEEEK8ZejQofTo0UPZTk5OZuTIkdjZ2WFmZkZ4eHgeRpc1UVFRHy3m2rVrs2LFCmXbzMyMHTt25Ph10rqWSJuMCc3HFi1aRH56oFV0dDTFixfP6zCEEAWM2/e5mwTtHlgtS+WHDh1KbGwsa9as+UgRpTZnzhx27tzJgQMH1PZHRUXh5OREcHAw1apl7j6mT5+u9lmxf/9+NmzYwObNm7GysqJEiRI5Gnt2eHh4cPToUQC0tLQwMTHB0dERT09P2rRpo5QrU6YM4eHhmYo5q+/V7t270dXVzf5NpGHDhg1MmDCBa9euffRrFUaShOZjRkZGeR2CmlKlSuV1CEIIId7x7sM8bt26hbm5OXXr1s12ncnJySQmJlK0aM6lCd27d2f06NEkJiZy7949duzYwYABA/D09GTevHkAaGhoYG5unmPXBHj58iVaWlqYmprmaL0Zyc1rFWQFujs+KSmJmTNnUr58eXR0dKhevTq///47ACEhIahUKnbv3k3NmjXR0dGhWbNmxMTEsHPnThwcHDA0NKRLly48f/5crd7Xr18zZMgQjIyMMDU1ZeLEiWrfMhMSEvDx8aFMmTLo6elRr149QkJC1OoICgqiXLly6Orq0q5dOx4+fJgq/lmzZmFubo6BgQF9+vThv//+Uzv+bne8q6sr3t7ejB49GhMTE0qVKoWfn5/aOX/99RcNGzakWLFiVK5cmX379mW6G/3ly5cMGTIECwsLihUrhpWVFTNnzlSOv12Pn58fKpUq1SsoKOi9vxshhChIjh49ipubG2XLlqVq1apMnTqV169fK8fj4+MZOHAg1tbWVK1ale+//x4PDw8mTJjwwdfesGEDFStWZP/+/bi4uGBtbU3nzp25f/++Uubt7vihQ4fi6+vL33//jZmZGbVr1wbefG6NGzeOypUrY2lpSZs2bTh79qxSR2hoKGZmZgQHB9OiRQvKli3LiRMn8PDwwNfXlwkTJmBra0vlypVZu3Ytz549w9vbm/Lly1O3bl2Cg4Pfey86OjqYm5tTunRpnJycmDRpEgEBAaxdu5aDBw8Cqbvjnzx5wsCBA3FwcKBcuXLUq1eP9evXA+Dk5ARA8+bNMTMzUz4vU96PBQsWUK1aNRo0aACk3UV+//59PD09KVeuHE5OTvzvf/9L9Z7ExsYq+8LDwzEzMyMqKorQ0FC8vb2Ji4vDzMwMMzMz5syZk+a1/v77b3r06IG1tTU2Njb07duXmJgY5ficOXNo2rQpv/76K7Vr16ZChQr079+f+Pj4976vBVmBTkJnzpzJmjVr+P7777l06RLffvst3bp1U/4xw5tkaenSpRw9epQ7d+7QqVMnFi5cyC+//ML27dvZs2cPS5YsUat39erVFC1alLCwMBYtWsT8+fNZtWqVcnzIkCEcO3aMDRs2cOHCBTp27EirVq2IjIwE4MSJE/Tp04chQ4Zw7tw5mjZtyrRp09Su8euvv+Ln58eMGTM4deoUFhYWLFu27L33vHr1avT09Dhx4gRz5sxhypQp7N27F4DExEQ8PDzQ1dXlxIkT/PDDD4wfPz7T7+fixYvZunUrv/76K1euXGHdunVYW1unWdbHx4fo6GjlFRAQgK6urvJHITO/m3clJCQQFxen9hJCiLwUHR1Nly5dqFGjBgcOHGDOnDn88ssvzJ8/XykzadIkTp48yZo1a/jtt984fvw4Fy5cyLEYXrx4wbJly/juu+/YunUrd+/eZfLkyWmWnT59OmPGjKF06dKEh4eze/duAKZMmcK2bdtYsmQJ+/bto3z58nTu3JnHjx+rnT916lQmTJjAkSNHqFy5MgAbN27ExMSE3bt307dvX0aPHk3fvn2pU6cOwcHBuLq6Mnjw4FQNOpnRuXNnjI2N2b59e5rHZ82axdWrV1m/fj1Hjhxhzpw5mJiYACj39vvvvxMeHk5gYKBy3uHDh7l27Rq//fYbP//8c7rXnz17Nm3atOHAgQN89dVX9O/fn6tXr2Yq9jp16jBt2jQMDAwIDw8nPDycQYMGpSqXlJREjx49ePz4MX/++Se//fYbt2/fpn///mrlbt26xc6dO/n5559Zt24dR48eZfHixZmKpaAqsN3xCQkJzJgxg3379uHs7AyAjY0NR44cYcWKFcovd9q0abi4uADQp08ffH19uX79OjY2NgB89dVXHDhwgDFjxih1W1pasmDBAlQqFfb29oSHh7NgwQL69etHVFQUgYGBREVFUbp0aeBNQrZr1y4CAwOZMWMGixYtolWrVowePRoAOzs7jh49yq5du5RrLFy4kD59+tCnTx8lzn379qVqDX2Xo6Oj8sfH1taWpUuXEhwcTMuWLdm7dy/Xr18nJCRE6TqfPn06LVu2zNR7GhUVha2tLQ0bNkSlUmFlZZVuWX19ffT136zdefz4cSZMmMDq1aupWrXqe383TZo0SbPOmTNn4u/vn6lYhRAiNwQGBlK6dGlmzZqFSqXC1taWf/75h6lTp+Lj48Pz58/ZuHEj33//PY0bNwbefKF3dHTMsRhevXrF3LlzKV++PAC9e/dWuq/fZWhoiL6+vlq39rNnzwgKCmLx4sU0b94cgPnz51O7dm3WrVvHkCFDlPPHjBmDq6urWp1VqlRhxIgRAAwbNozFixdjYmJC9+7dARg5ciRBQUFcvnxZaYjIrCJFilChQgXu3LmT5vG7d+9SrVo1ZdJuuXLllGMp40aLFy+eqgtfV1eXBQsWoKWlleH13d3d6datGwBjx47l4MGDrFq1SmnRzIiWlhaGhoaoVKoMhxAcOnSIiIgITp06RZkyZQBYunQpjRo14uzZs9SsWRN4MwRiyZIlymdrx44dOXz48HvjKMgKbEvotWvXeP78OS1btlQSIn19fdasWcP169eVcm//ITA3N0dXV1dJQFP2vd0kDlC/fn1UKpWy7ezsTGRkJImJiYSHh5OYmIidnZ3adQ8ePKhcNyIiItUz2lOSsRSZKZOWd/+wWVhYKPFfuXIFS0tLtbGbWRkT5OXlxblz57C3t8fb25s9e/a895yoqCg8PDzw8fGhU6dOQOZ/N+/y9fUlNjZWeaX3R0kIIXLL1atXcXJyUvtMqFu3Ls+ePePevXvcunWLV69eKYkEvEkEK1SokGMx6OrqKgkovPncevDgQabPT4nx7c8DTU1NatasqfTgpXh7hZYUKS2i8GbMpomJCQ4O///wDjMzM4AsxfS25ORktff3bV5eXmzZsoWmTZvi7+9PWFhYpup0cHB4bwIKpEqanZycUr0nHyoyMpIyZcooCSiAvb09RkZGaq2ulpaWSgIKb37P//77b47Gkt8U2JbQlHES27dvV/vFAmhrayvJjqamprJfpVKpbafsS0pKytJ1NTQ0OH36NBoaGmrH3v7H87F8aPwZqVWrFjdv3mTnzp3s27ePTp060aJFi3THcj579owvv/wSZ2dnpkyZoux/3+8mPdra2hkeF0KIwsLAwICnT5+m2p8y/vDtyUbvTg5SqVQfbeWUtGZ0p/W58+5nK5Ctz6LExERu3LiRZvILb8Z7nj59mn379nHw4EG++uorevXq9d5es5yYmV6kyJt2urff67fHAue03Pw95xcFtiW0cuXKaGtrExUVRcWKFdVelpaWH1T3iRMn1LaPHz+Ora0tGhoa1KxZk8TERGJiYlJdN6UF0sHBIc063paZMlllb2/PnTt31Aasnzx5Mkt1GBoa0rlzZ1auXMnGjRv5448/ePToUapyycnJdOvWjaSkJNauXav2LfZj/m6EECI32dnZcerUKbVkICwsDH19fUqXLo21tTWamppqk3zi4uIy7PUBqFixIvfu3UvVExceHk6xYsUoW7Zsjt2DtbU1Wlpaaq2Ir1694ty5c9jZ2eXYdbJj48aNPHnyRG2ZpneZmpri6enJ8uXLmTp1KmvXrgVQWjo/pCHm9OnTatunTp3C1tYW+P/u/rc/Uy9evKhWXlNTk8TExAyvYWtry927d7l7966y78qVK8TGxmJvb5/t2AuDAtsSamBggI+PD99++y1JSUk0bNiQ2NhYQkNDMTQ0zHA84/tERUUxYsQIBgwYwJkzZ1iyZIky/sbOzo6uXbvSo0cP5s2bR82aNfn3338JDg7G0dGRL774Am9vb1xcXAgICKBt27bs3r1bbTwovBlX4+XlhZOTEy4uLqxbt45Lly6pDRXIqpYtW1KhQgV69uzJnDlzePr0qTI7M72ujrfNnz8fCwsLatasSZEiRfjtt98oVapUmovs+/n5sW/fPvbs2UN8fLzS+mlkZPTe303Pnj2zfY9CCPExPH36NNUC6SYmJvTq1YsffvgBX19f+vTpw7Vr15g7dy4DBw6kSJEi6Ovr07lzZ/z9/SlevDimpqbMmTOHIkWKZPh3t2nTplSsWJGBAwcyduxYZUb4zJkz6devX6qetg+hp6eHl5eXEmOZMmVYunQpL168oGvXrjl2nfd58eIF9+/fV1uiacWKFXh5edGwYcM0z5k1axbVq1fH3t6ely9fsnfvXiVxNjU1RUdHh/379yurury7XNX7/O9//6NGjRrUq1eP33//nbNnz7Jw4UIAypcvT5kyZZg7dy7jxo3j+vXrLF++XO18S0tLnj17xqFDh6hSpQo6OjqpWmGbNGmCg4MD33zzDdOmTeP169eMGTOGBg0apNsC/KkosEkovJnFV7JkSWbOnMmNGzcwNjamVq1ajBs37oO+GfXo0YMXL15Qt25dNDQ0GDZsmNostsDAQKZNm8bIkSO5e/cupqam1K9fX/kmV79+fVauXMnkyZOZNGkSLVq0YMKECUydOlWpo3Pnzly/fp3Ro0fz33//0aFDB7755htltl92aGhosGXLFmXWoo2NDXPnzsXd3Z1ixYq993wDAwPmzJlDZGQkGhoa1KlThx07dihdEm87ePAg8fHxytIXb783Xl5eGf5uhBCflqwuHp8XQkNDlUk7Kbp27cqCBQv45Zdf8Pf3p2nTphgbG9OlSxdlog68mXnu4+NDt27d0NfXZ8iQIdy7dy/D4UVFixbl119/Zfr06QwcOJCHDx9Srlw5+vXrxzfffJPj9zdhwgSSkpIYPHgw8fHxVK9enY0bN773SX45ae3ataxduxYtLS2KFy9O9erV+eGHH/jiiy/SPUdLS4vp06dz584dihUrRr169ZSlj4oWLcr06dOZN28es2fPpn79+ll+qt+oUaPYvHkzY8aMwdzcnBUrViitk5qamnz//feMHj0aV1dXatSooXwZSVG3bl169uxJ//79efToET4+Psqk5BQqlYo1a9Ywbtw4vvzyS4oUKUKzZs2YMWNGlmItjFTJhX3AwScuNDSUhg0bcu3atRwdKJ8b4uLiMDIyot/PYWjpfvzxtu+ztJ3D+wsJ8Qm7ceMGBgYGeR1Gnnv27BnVq1fH398/V1sahchtT58+TbMHN+XzOzY2NsPW6QLdEipS27x5M/r6+tja2nLt2jWGDRuGi4tLgUtAhRCioAgPDycyMpKaNWvy9OlTAgICAGjVqlUeRyZE/iZJaCHz9OlTxowZQ1RUFKamprRo0UIZzzpjxox0m/8bNWrEzp07czPUTAtwt8/yOB8hhMhNy5Yt49q1a2hpaeHo6MjWrVvzxTPbhcjPpDv+E/Lo0aM0Z7rDm8epvbucUl7LbHO+ECJ/kO54IT4t0h0vMs3ExER53JkQQgghRF4qsOuECiGEEEKIgktaQkW+12j2QTSK6eXZ9c9MbJZn1xZCCCEKK2kJFUIIIYQQuU6SUCGEEEIIkeskCc1H/Pz8CuQjvG7duoVKpeLcuXN5HYoQQgghCghJQvMRHx8fgoOD8zqMDHl5eeHh4aG2z9LSkujoaKpWrZo3QQkhRC4xMzNjx44deR1GvhIVFYWZmRnh4eHKvhMnTtCkSRNKly5Njx498jC6rBs6dOhHiXnDhg1UrFhR2Z4zZw5NmzbN8eukda38SiYm5SP6+vro6+fN4ylfvXqFpqZmts7V0NCgVKlSORyREKKwcPs+/P2FclBWn1U/dOhQNm7cCLx5HrmxsTGVK1emffv2eHp6UqTI/7fXhIeH5+rz1t+1YcMGJkyYwLVr1z64LjMzM4KCgmjdurXa/qFDhxIbG8uaNWsyVU+ZMmUIDw9XW5x/8uTJVKlShfXr16Onl3cTS1OEhobSrl074M2z3PX19bGysqJJkyYMHDgQc3Nzpez06dPJ7BLqWXmv2rZtS/PmzbN3AxmoXbs2/fv3Z8CAAR/9WjlNWkJzkKurK97e3owePRoTExNKlSqFn5+fcjwqKoq2bduir6+PoaEhnTp14v79+8rxd7vjQ0JCqFu3Lnp6ehgbG+Pi4sLt27eV43/++Se1atWiWLFi2NjY4O/vz+vXrzMVq0qlYvny5Xz55Zfo6ekxffp0EhMT6dOnD+XLl0dHRwd7e3sWLVqkFt/q1av5888/UalUqFQqQkJC0uyOP3jwIHXr1kVbWxsLCwvGjh2b6diEECK3NWvWjPDwcE6fPs2GDRto2LAh48ePp2vXrmp/u8zNzdHW1s7x6ycmJpKUlJTj9eYGDQ0NzM3NKVr0/9u1bt26RaNGjShdujRGRkbZqvfly5c5FaLi2LFjXLhwgT179jB06FAOHTpE48aNuXz5slLG0NAw2zGn59WrV+jo6FCyZMkcrTc9uXmtDyFJaA5bvXo1enp6nDhxgjlz5jBlyhT27t1LUlISbdu25dGjRxw8eJC9e/dy48YNOnfunGY9r1+/xsPDgyZNmnDhwgWOHTtG//79UalUABw+fJgePXowbNgwLl++zIoVKwgKCmL69OmZjtXPz4927doRHh5O7969SUpKomzZsvz2229cvnyZSZMmMW7cOH799VfgzXCBTp060apVK6Kjo4mOjqZBgwap6r179y6tW7emTp06nD9/nuXLl/Pjjz8ybdq0DONJSEggLi5O7SWEELlBS0sLc3NzLCwscHR0ZPjw4axZs4bg4GA2bNiglHu7O/7ly5eMHTuWqlWrYmlpSa1atdS+uMfGxjJy5EgqV66MpaUljRs3Zs+ePcD/d5fu2rWLhg0bUrZsWf7++28SEhKYPHkyjo6OWFtb06pVK0JDQ4E3rXne3t7ExcVhZmaGmZkZc+bMAcjwvA9Vu3ZtFi5cyLBhwyhfvjw1a9ZUa/l7uzs+5edHjx4xbNgwzMzMlPfv6NGjuLm5UbZsWapWrcrUqVPVEnwPDw/Gjh3LhAkTqFSpEp07dyY0NBQzMzP2799Ps2bNKFeuHO3bt+fff/8lODgYFxcXbGxsGDhwIM+fP3/vvZiammJubk6FChVo164d27Zto0SJEowePVop8253/P/+9z+aNGlCuXLlsLe3p0OHDjx79ow5c+awceNGdu3apfw+QkNDlfdgy5YttG3bFktLS/744490u8hXr15NjRo1sLKyom/fvmqffR4eHkyYMEGtfI8ePRg6dKhy/M6dO0ycOFGJAdLujg8MDKROnTqUKVMGZ2dn5bM9hZmZGT///DM9e/bEysqKevXqsWvXrve+px9CuuNzmKOjI5MnTwbA1taWpUuXKuM8w8PDuXnzJpaWlgCsWbOGKlWqcPLkSerUqaNWT1xcHLGxsbRp04YKFSoA4ODgoBz39/dn7Nix9OzZEwAbGxumTp3K6NGjleu/T5cuXejVq5faPn9/f+Xn8uXLc+zYMX799Vc6deqEvr4+Ojo6JCQkZNj9vmzZMiwtLVm6dCkqlYpKlSpx7949xowZw6RJk9S6tt42c+ZMtesLIUReatSoEVWqVGH79u1069Yt1fGVK1eye/duVq1aRZkyZbh79y737t0DICkpCU9PT549e8ayZcuwtrbm6tWraGhoKOe/ePGCJUuWMH/+fExMTDA1NcXX15crV67www8/YG5uzo4dO/D09OTgwYPUqVOHadOmMXv2bI4ePQqgdHVndF5aj1XMquXLlzNmzBiGDRvGtm3bGD16NA0aNEiV6KR0zTdo0IAxY8bQtm1bDA0NiY6OpkuXLnTu3JmlS5cSGRnJyJEj0dbWVksAN27ciJeXF9u2bQNQegvnzp3LzJkz0dXVpW/fvvTr1w8tLS2+//57nj17hpeXF6tWrcLb2ztL96Wjo0PPnj2ZOHEi//77b6rWw/v37zNgwAAmTZpE69atiY+P5/jx4yQnJzNo0CAiIyN5+vSp8uWjePHi/PPPPwBMmzYNPz8/qlWrRrFixThw4ECq69+8eZOtW7eydu1a4uPjGT58OKNHj+b777/PVPyBgYE0bdqU7t27p/lvNMX27duZMGECU6dOpUmTJuzZs4dhw4ZRunRpGjZsqJQLCAhg0qRJTJ48mR9//JFvvvmGM2fOULx48UzFk1WShOYwR0dHtW0LCwtiYmKIiIjA0tJSSUABKleujLGxMREREamSUBMTE7y8vHBzc6Nly5a0aNGCTp06YWFhAcD58+cJDQ1Va/lMTEzkv//+4/nz5+jq6r43Vicnp1T7vvvuO3766SeioqJ48eIFL1++zPKM/YiICJydnZVWWwAXFxfi4+P5+++/KVeuXJrn+fr6MmLECGU7Li5O7f0SQojcZmtrq9ZV+7a7d+9iY2NDvXr1UKlUan+vDh48yNmzZwkNDVUaEqytrdXOf/XqFbNnz1Ymdf7999+sX7+es2fPKl/0Bw8ezP79+1m/fj3jx4/H0NAQlUqlNoYxM+d9qObNm9O7d2/gTUvh999/z5EjR1IloSld8yqVCkNDQyXOBQsWULp0aWbNmoVKpcLW1pZ//vmHqVOn4uPjozRO2NjYqDWkpCShvr6+1KtXD4CuXbsybdo0wsLClPe0TZs2SktxVtna2gJw586dNJPQ169f88UXXyi/38qVKyvHixUrRkJCgtrvI0X//v1p06ZNhtdOSEhg6dKlymf7zJkz6dKlC/7+/mnW+a7ixYujoaGBvr5+huWXLVuGp6en8jv85ptvOH36NMuWLVNLQj09PWnfvj0A48aNY+XKlZw9e5ZmzT7OQ1skCc1h707uUalU2R7nExgYiLe3N7t27WLjxo1MmDCBvXv3Ur9+feLj4/H391f+sbytWLFimar/3cHiGzZswMfHh3nz5uHs7IyBgQFz587lxIkT2Yo/q7S1tT/KWCshhMiu5ORktS/Ub/P09KRjx444OzvTrFkzWrZsqcx2vnjxIqVLl1YS0LRoaWlRpUoVZTsiIoLExETq16+vVu7ly5eYmJikW092z8uKtxMvlUqFmZkZDx48yPT5V69excnJSe29rFu3Ls+ePePevXuULVsWgOrVq7/3+iVLlkRXV1ctqS9ZsiRnz57NdDxvS5mElNbvuUqVKjRq1IgmTZrQtGlTXF1dcXd3z9TktPTu5W1lypRRElB40ziUlJTE9evXM5WEZlZkZCTdu3dX21e3bl1++OEHtX1vv896enoYGBjw77//5lgc75IkNJc4ODhw584d7ty5o3ybunz5Mk+ePFH7pb+rZs2a1KxZE19fX5ydnfnll1+oX78+tWrV4sqVKzm6BENoaCgNGjRg0KBByr7r16+rldHS0iIxMTHDehwcHPjjjz/U/niHhoZiYGCg/KERQoiC4OrVq+n23jg6OnLq1CmCg4M5dOgQ/fr1o3Hjxvz000/o6Oi8t+5ixYqpJT7Pnj1DQ0ODffv2pRq2lNEM8+yep6+vn+bY+9jYWAwNDdX25WQDS0bS68V7+/oqlUptEtSHxnP16lWANHveNDQ0+P333wkLCyMkJIRVq1Yxc+ZMdu7ciZWVVYb1ZqZH8n2KFCmSaqb+x5zkm9b7mtmVArJDJiblkhYtWlCtWjW6du3KmTNnCAsLo0ePHjRp0iTNbvGbN2/i6+vLsWPHuH37Nnv27CEyMlIZFzpp0iTWrFmDv78/ly5dIiIiQlm6I7tsbW05deoUu3fv5urVq0ycOJGTJ0+qlbG2tubChQtcuXKFBw8e8OrVq1T1DBo0iDt37jB06FD++usv/vzzTyZPnsyIESPSHQ8qhBD5zeHDh4mIiMiwS9XAwAAPDw/mz5/PDz/8wLZt23j8+DGVK1fm3r17qb7IZ6RatWokJiby4MEDbGxs1F4prWKampqpGgIyc15aKlasyIULF9T2JSYmcvny5QxbcLPDzs6OU6dOqSU0YWFh6OvrU7p06Ry9Vla8ePGCtWvX4uzsjKmpaZplVCoV9erVY8yYMezfvx9NTU1lcpqWltYHJeN3795VxpACnDp1iiJFiijvf4kSJdRW0UlMTOSvv/5SqyOtfxPvsrW1TfV5HhYWhr29fbZjzwmSEeQSlUrFn3/+SfHixWncuDEtWrTAxsZGWZvuXbq6uvz111906NABOzs7+vfvz+DBg5V1wNzc3Ni2bRt79uyhTp061K9fnwULFrz3m1lGBgwYQPv27encuTP16tXj4cOHaq2iAP369cPe3h4nJydKliyZ5uzLMmXKsGPHDsLCwqhevToDBw6kT58+H5QgCyHEx/Ty5Uvu379PdHQ0Fy5cYOHChfTo0YPPPvuMTp06pXnO8uXL2bRpE5GRkVy/fp3//e9/mJmZYWRkRIMGDXB2dqZ3796EhIRw+/ZtgoOD2b9/f7oxVKhQgQ4dOjBkyBC2bdvG7du3OXPmDIsWLWLv3r3Am9a6Z8+ecejQIR4+fMjz588zdV5aBg4cyLp16/jpp5+4ceMG4eHhjBw5kidPntC1a9cPe0Pf0atXL+7du4evry+RkZHs3LmTuXPnMnDgwFxtnHjw4AH379/nxo0bbN68mTZt2vDo0SNllYF3nT59moULF3Lu3Dn+/vtvtm/fzsOHD7GzswPe/D4uX77MtWvXePjwYZoNMxnR1tZmyJAhXLx4kePHjzN+/Hjatm2rfHlo2LAh+/btY+/evURGRjJ69GhiY2PV6rC0tOT48eNER0fz8OHDNK8zePBgNmzYQGBgIDdu3GD58uVs37491Wd8bpPu+BwUEhKSat+WLVuUn8uVK8eff/6Z7vl+fn7KuqLm5uZs3rw5w+u5ubnh5uaWnVDTbF7X1tYmMDCQwMBAtf0zZ85Ufi5ZsqSyxEhG9TVp0oSwsLBsxSaEKFyyunh8Xti/fz/VqlVTW6x+xowZdO7cOd0kSV9fn6VLl3Ljxg00NDSoUaMG69evV8r/9NNP+Pn5KcsHlS9f/r1fxhcvXsz8+fPx8/MjOjoaExMTateuTcuWLYE34/h69uxJ//79efToET4+PowePfq956Wlffv2JCcn8/333zNt2jR0dHSoXr06f/75p7LUT06xsLDgl19+wd/fn6ZNm2JsbEyXLl3UJqPmhpRJs3p6elhZWeHq6ppqsfq3GRgYcOzYMX744QeePn1K2bJl8ff3VxaC79atG6GhobRs2ZJnz56xefPmLE2oLV++PF988QVdunThyZMntGzZktmzZyvHu3TpwqVLlxgyZAgaGhoMHDgQFxcXtTrGjBmDj48PdevWJSEhgZiYmFTXad26NdOmTWPZsmVMmDCBcuXKsWjRolR15TZV8sfs7BfiA8TFxWFkZITjuK1oFMu7J26cmfhxZgUKUdjcuHEDAwODvA5DCJFLnj59muYSYCmf32mNL36btIQWQuvWrVN7fNfbrKysuHTpUi5H9GEOj2mS4T9iIYQQQhQ8koQWQl9++aWyntq7svt8eCGEEEKInCRJaCFkYGAgXWJCCCGEyNdkdrwQQgghhMh10hIq8r2w60/QM8jZRZGdKxrnaH1CCCGEyBppCRVCCCGEELlOklAhhBBCCJHrJAktIFQqldrC9znF1dWV4cOHZ7r8rVu3UKlUnDt3LsdjEUIIIcSnQ5JQIYQQQgiR6yQJFbnu5cuXeR2CEEIUKKGhoZiZmak9N3zHjh3UrVuXUqVKvfdxoPmNh4fHR4l5zpw5NG3aVNkeOnQoPXr0yPHrpHUtkXUyOz6X/f777/j7+3Pt2jV0dXWpWbMmf/75J3p6evz000/MmzePa9euYWJiQocOHVi6dKly7oMHD2jXrh27d++mTJkyzJs3jy+//FI5fvHiRUaNGsXhw4fR09Pjs88+Y8GCBZiamgLw7NkzvvnmGzZt2oSBgQE+Pj6p4lOpVGzevBkPDw9ln7GxMQsXLsTLyyvNe3rfdV1dXalatSpFixbl559/plq1ahw4cCAH3k0hREHgf+RBrl5vckPTLJUfOnQosf/X3p3H5ZT+jx9/3UVpFymhhTYhGSXbNNkNw2iYsYzJOrYw9n3fFdlpLGPQzEcZzMzH2IbIEiMSE+NDERmTnRaMpc7vD7/O161FUdnez8fjfnDOuc51XedcdZ9313Wdc5KTWbduXZ73sbS0ZM2aNbRs2TLHNImJiXh6ehIeHo6bm5vWNl9fX6pVq8b06dPzVF6tWrWIjY3Venvc8OHD6dSpE7169cLY2DjPdS8soaGhfPPNNwDo6OhgYmKCg4MDTZo0oXfv3lp1//777/P88pT8nCt/f3++/vrrlzuAXGTX3oVV1vtEekKLUFJSEp06daJHjx6cOXOGiIgI2rZti6IoBAcH079/f3r37k1sbCz//e9/cXR01Np/ypQptG/fnj///JOWLVvSuXNnbt++DcDdu3dp1KgRH3zwAceOHWPHjh1cu3aN9u3bq/uPGDGCffv28euvv/L7778TERHB8ePHX+mY8lIuwNq1a9HT0yMyMpJvv/0227wePnxISkqK1kcIIQTo6elhZWWFRqMBIC0tjZs3b9KwYUPKli370kFoQY9MmZiYEBsby8mTJ9m6dSt+fn5s2LCBRo0acfXqVTWdubl5gQbOiqLw5MkTjI2NKVWqVIHlm5uiLOtdJUFoEUpKSuLJkye0bdsWe3t73Nzc8Pf3x9jYmOnTpzNs2DAGDRqEs7MztWrVynLDULdu3ejUqROOjo7MnDmTtLQ0oqKiAFiyZAkffPABM2fOpHLlynzwwQesXr2avXv3cu7cOdLS0vjuu++YO3cujRs3xs3NjbVr1/LkyZNXOqYXlZvJycmJwMBAXFxccHFxyTavWbNmYWZmpn5sbGxeqW5CCPEyfH19GTt2LFOmTMHZ2ZmqVasSGBiobvfw8ACefidbWlqqy6/C0tKSH374ga5du2JnZ0ft2rXZsWOHuv3Z4fjIyEgqVaoEQNu2bbG0tCQyMhKALVu24O3tTYUKFfDw8GDZsmVa5Xh4eBAUFET//v2pVKkSw4YNIzQ0FEdHR37//Xfq1q2LnZ0dPXr04P79+4SGhuLh4YGTkxNjx44lPT091+PQaDRYWVlhZWWFs7MznTt3ZuvWrdy7d48pU6ao6Z4fjl+9ejW1a9fGxsaGKlWq0KNHD+BpL/WhQ4dYsWIFlpaWWFpakpiYqJ6P8PBwmjRpQoUKFThy5EiOQ+Rz5szB1dWVSpUqMXz4cK3g28PDg+XLl2ulb9iwodrmObX382VlZGQwd+5c3N3dqVChAg0bNmTPnj3q9sTERCwtLfntt9/47LPPsLOzo0GDBhw9ejTXc/oukyC0CLm7u6sB4BdffMHKlSu5c+cO169f559//qFx48a57l+9enX1/0ZGRpiamnL9+nUATp48yd69ezE2NlY/lStXBuD8+fOcP3+eR48eab1TvlSpUjkGhHn1onIz5eVLesyYMSQnJ6ufy5cvv1LdhBDiZYWFhWFoaMiOHTuYOHEiQUFBREREALBz504AFi1aRGxsrLr8qubOnUubNm3Yu3cvTZo0oV+/fty5cydLulq1anH48GHgafAWGxtLrVq1OHnyJL169cLX15d9+/YxYsQIAgICCA0N1dp/2bJlVK1alfDwcIYOHQrAgwcPWLlyJStWrCA0NJRDhw7RrVs3wsPD+c9//sPSpUtZt24dW7ZsyfdxlSlThnbt2rFz585sg9gTJ04wbtw4Ro0axaFDhwgLC6Nu3boAzJgxA09PT/z8/IiNjSU2Npby5cur+06bNo3x48dz8OBBqlSpkm35Bw4cIC4ujp9//pnly5ezbds25s6dm+f657W9V6xYQXBwMJMnTyYiIoKGDRvi5+fHhQsXtNLNmjULf39/9uzZg4ODA3379n3lDqG3lcwJLUK6urrs2rWLQ4cO8fvvv7N48WLGjRtHeHh4nvZ/fv6MRqMhI+Ppm4TS0tJo3bo1AQEBWfaztrYmPj4+T2VoNBoURdFa9/jx4xzTv6jcTEZGRi8sW19fH319/TzVUwghClOVKlUYMWIEAJUqVWL16tUcOHCABg0aqPPdTU1NsbKyKrAyO3bsSNu2bQEYO3YsK1euJCYmhkaNGmml09PTU+tgbm6u1iE4OBhvb2+GDRsGgIODA2fPnmXp0qV07NhR3f/DDz/E399fXT5y5AiPHz8mMDCQihUrAtCqVSs2btzIqVOnMDY2xsXFhfr163Pw4EGtewbyytHRkbS0NG7fvk2ZMmW0tv39998YGhrSrFkzjI2NsbGxUefQmpqaoqenh4GBQbbnetSoUTRo0CDXsvX09FiwYAGGhoZUrlyZkSNHMmXKFEaPHo2Ozov74vLa3suWLWPgwIF89tlnAEycOJHIyEiWL1+udY309/enadOmAIwcORJvb28SEhJwcnJ6YV3eNdITWsQ0Gg3169dnypQpxMTEoKenx65du7C3t89zMJqdmjVrcvr0aezt7XF0dNT6GBkZ4eDgQPHixTly5Ii6z507d7SGzOHpX6xJSUnqclxcHPfv33/pcoUQ4m30fK+alZUVN28W7g1Wz5ZpZGSEiYkJN27cyPP+cXFxeHl5aa3z8vLiwoULWj2QNWrUyLKvoaGhGoDC02uBjY2N1rzNMmXKvPQ5yOzcyJzT+qwGDRpQoUIFatWqhb+/Pxs3bsz1uvOs7I7leVWrVsXQ0FBd9vT05N69e1y5ciVvlc+D1NRUrl69mu35j4uL01r3bDtnBrWF/bP1ppIgtAgdOXKEmTNncuzYMRITE9m8eTM3btzA1dWVyZMnExQUxKJFi4iLi+P48eMsXrw4z3n379+f27dv06lTJ44ePcr58+fZuXMn3bt3Jz09HWNjY3r27MmIESPYs2cPp06dolu3bln+CmzUqBFLliwhJiaGY8eO0bdv31zvYHxRuUII8TbK7nsvc+Qpr0xMTICnAcrzkpOT1e2ZihXTHpzMbmSqIDwbkOVWdnbr8nsOMsXFxWFiYpLtjTzGxsaEh4fz7bffYmVlRUBAAA0bNtR6HFVOsjuW/MruPBfm8Piz5zUzKH/Z8/q2kyC0CJmamrJ//35atmyJs7Mz48ePJygoiBYtWtC1a1cWLFigztVp1apVlr+eclOuXDkiIyNJT0+nWbNmuLm5MXjwYEqWLKkGmnPmzMHb25vWrVvTpEkTPvzwwyxzNYOCgrCxscHb25svv/yS4cOH5/pLnpdyhRDiXVO8ePEX/qFtbm5O6dKlOXnypNb61NRUEhIScHBwKNA6OTk5qTerZoqKisLBwQFdXd0CLSs/bty4webNm2nRokWO14VixYrh4+PDpEmTiIiI4PLlyxw4cADI27nOzenTp3nw4IG6HB0djZGRkTq31MLCgmvXrqnbU1NTSUxM1MrjRXUwMTGhbNmy2Z5/Z2fnl677u07mhBYhV1dXrbsdn9enTx/69OmT7bbs/hq+e/eu1rKTkxObN2/OMX9jY2NCQkIICQlR12XOecpUrly5LJOuny3H3t4+S11eVG7mZH4hhHhX2NjYcODAAby8vNDX16dkyZLZpuvbty8LFy6kTJkyeHh4cOfOHebNm4eFhQWffPJJgdbJ39+fZs2aERQUhK+vL0ePHmX16tXZztkvLIqiqAFdcnIyx44dY8GCBZiYmDBhwoRs9/n999+5dOkSderUoWTJkuzevZuMjAz1MYW2trYcP36cxMREjIyMMDc3z1edHj16xJAhQxgyZAiXL18mMDCQnj17qgHxhx9+SGhoKM2bN8fU1JSAgIAswXJe2rt///4EBgZib29PtWrVWL9+PadOnSI4ODhf9X2fSBAqhBCiUOX34fFvgylTpjBx4kR++OEHrK2tiY6OzjbdgAEDMDIyYvHixVy6dImSJUvi5eXF5s2bMTAwKNA6Va9enZUrVxIYGMi8efOwsrJi5MiRWjclFbbU1FTc3NzQaDSYmJjg6OhIhw4d6N27d5bpB5lMTU3ZunUrc+bM4eHDh1SsWJHly5erT1rx9/dnwIABeHt78+DBA44dO5avOnl7e1OxYkXatGnDw4cPadu2rVYHzKBBg0hMTKRz586YmpoyatSoLD2heWnvXr16kZKSwqRJk7h58ybOzs6EhISoj9MSWWmUwphwIkQBSElJwczMjOTkZK03bQgh3kwXLlzIMdAQQrx7UlNTsw2y83r9lkl7QgghhBCiyEkQKoQQQgghipwEoUIIIYQQosjJjUnijecdsA/dEnl/8P3xCY1enEgIIYQQr5X0hAohhBBCiCInQagQQgghhChyEoS+Abp164avr2+uaezt7VmwYIG6fPXqVZo2bYqRkVGOD0kuas/XUQghhBAiJzIn9C1x9OhRjIz+b17k/PnzSUpK4sSJE5iZmREREUHDhg25c+dOoQela9asYfDgwVne2PR8HYUQQgghciI9oW+JMmXKaL3D/fz583h4eODk5ISlpWWBlPHo0aNX2v/5OgohhBBC5ESC0CK0ceNG3NzcMDAwoHTp0jRp0oR79+6p2+fOnYu1tTWlS5emf//+PH78WN327FC3vb09mzZtYt26dWg0Grp160bDhg0BMDc3V9e9SIMGDRgwYACDBw/GwsKC5s2bAzBv3jzc3NwwMjLCxsYGf39/0tLSgKfvge/evTvJycloNBo0Gg2TJ0/OUkeAxMRE2rRpg7GxMaamprRv3159p7AQQog3n6WlJdu2bVOX4+LiaNGiBTY2Nup1520RGBhYKHWOjIzE0tKS5ORkAEJDQ9X33hd2WW87GY4vIklJSXTq1InAwEA+++wzUlNTOXDgAJlvTd27dy/W1tbs3buX+Ph4OnToQI0aNejVq1eWvI4ePUqXLl0wNTVl4cKFGBgY8Omnn9KuXTvOnj2Lqalpnt9JvHbtWvr160dkZKS6TkdHh0WLFlGxYkUuXLiAv78/I0eOZNmyZdSrV48FCxYwceJEzp49C4CxsXGWfDMyMtQAdN++fTx58oT+/fvToUMHIiIisq3Lw4cPefjwobqckpKSp2MQQrzZphy8WaTl5fdd9QMHDiQ5OZl169bleR9LS0vWrFlDy5YtCyRdQfLw8KB379706dNHa31gYCDbt29n7969ec4rNjZWa4pXYGAghoaGHDp06I2YfpWYmIinp6e6bGRkRIUKFahXrx59+vTReqWkv78/X3/9dZ7yzc+5qlWrFrGxsQX+emlfX1+qVavG9OnTC72s10WC0CKSlJTEkydPaNu2LXZ2dgC4ubmp283NzVmyZAm6urpUrlyZTz75hPDw8GyD0DJlyqCvr4+BgQFly5YFoFSpUsDTL7z8zAl1cnIiMDBQa93gwYPV/9vb2zN9+nT69u3LsmXL0NPTw8zMDI1Go5adnfDwcGJjY0lISMDGxgaAdevWUbVqVY4ePUqtWrWy7DNr1iymTJmS57oLIYQoXFZWVlrLFy9epEmTJur3+st49OgRenp6r1o1LRs3bsTFxYUHDx5w5swZVq5cScOGDQkJCeGjjz4Csu8weVWPHz9GT08vy3kqLEVZVlGQ4fgi4u7uTuPGjXFzc+OLL75g5cqV3LlzR91etWpVdHV11WVra2uuX79e6PXy8PDIsm737t00btyY8uXLY2Jigp+fH7du3eL+/ft5zvfMmTPY2NhofVFVqVKFkiVLcubMmWz3GTNmDMnJyern8uXL+T8gIYR4Rb6+vowdO5YpU6bg7OxM1apVtf5Yz/ze7NatG5aWltl+j+ZFRkYGc+fOxd3dnQoVKtCwYUP27NmjlSYqKoqGDRtiY2ND06ZN2bZtG5aWlsTGxr78Af5/LzpO0B6Ot7S05OTJkwQFBWFpaamm/euvv2jbti22tra4uLgwbNgwdQoXPO1p7tKlC/Pnz8fNzY169eqRmJiIpaUlv/76K61bt8bW1pZmzZpx/vx5YmJiaNq0Kfb29nTs2JGbN1/ck25ubo6VlRX29va0aNGCjRs3UrNmTYYMGUJ6ejqQdTg+MjKS5s2bY29vj6OjI5988gmXL18mNDSUuXPncvr0aSwtLbG0tCQ0NFQ9B99//z1+fn7Y29szf/78HIfIt23bRu3atbGxsaF9+/ZcuXIlyzl51vjx49Un5QwcOJBDhw6xYsUKtQ6JiYnZlrVlyxa8vb2pUKECHh4eLFu2TCtfDw8PFixYwKBBg6hYsSIffPBBvnr9C5MEoUVEV1eXXbt2sX37dqpUqcLixYtxcXEhISEBgOLFi2ul12g0ZGRkFHq9nh9OuXjxIq1ataJ69eps2rSJ6Oholi5dCrz6jUsvoq+vj6mpqdZHCCFeh7CwMAwNDdmxYwcTJ04kKChInUq0c+dOABYtWkRsbKy6nF8rVqwgODiYyZMnq0848fPz48KFCwCkpqbi5+eHq6sru3fvZvTo0UybNq1Aji9Tbsf5vNjYWCpXrky/fv2IjY3F39+fe/fu0aFDB8zMzNi5cyerVq1i3759jBkzRmvfAwcOEB8fz08//cQPP/ygrg8MDGTIkCHs3r0bXV1d+vbty9SpU5k+fTpbtmwhISGBgICAfB+Xjo4OvXr14vLly5w8eTLL9idPntC1a1fq1q3L3r172bZtG35+fmg0Gtq0aUO/fv2oXLkysbGxxMbG0qZNG3XfOXPm0LJlSyIiIvjyyy+zLf/BgwcsWLCAJUuW8Ntvv5GSkkLv3r3zXP8ZM2bg6emJn5+fWofy5ctnSXfy5El69eqFr68v+/btY8SIEQQEBKhBc6bg4GDc3d0JDw+ne/fujBw5kvj4+DzXp7DIcHwR0mg01K9fn/r16zNx4kTs7Oz4+eefCyTvzKGNzL/4XlZ0dDQZGRkEBQWho/P0b5QNGzZkKetF5bi6unL58mUuX76s9ob+9ddf3L17lypVqrxSHYUQorBVqVKFESNGAFCpUiVWr17NgQMHaNCgARYWT+ecmpqavtLQ6LJlyxg4cCCfffYZABMnTiQyMpLly5cTEBDApk2b0Gg0zJs3jxIlSuDi4kJSUhJDhw599QP8/3I7zudZWVmhq6uLkZGRetwhISE8fPiQJUuWqJ0as2fP5quvvmLChAnq01sMDQ2ZP3++eq1KTEwEns7TbNTo6auWM+exbtq0idq1awPQuXPnLAFVXjk5OQFw+fJlatasqbUtNTWVlJQUmjVrRsWKFQFwdnZWtxsZGaGrq5tt+7Zr145OnTqpy5cuXcqS5vHjx8yaNUvtJV+8eDH169fn+PHjWeqSHVNTU/T09DAwMMj1Zyw4OBhvb2+GDRsGgIODA2fPnmXp0qV07NhRTde4cWN69OgBPO1l/fbbbzl48GCh3UCVV9ITWkSOHDnCzJkzOXbsGImJiWzevJkbN27g6upaIPnb2dmh0Wj47bffuHHjhtZQSH44Ojry+PFjFi9ezIULFwgJCeHbb7/VSmNvb09aWhrh4eHcvHkz22H6Jk2a4ObmRufOnTl+/DhRUVF06dIFHx8frUnkQgjxJnr+j2UrK6s8DQvnVWpqKlevXsXLy0trvZeXF3FxccDTR/FVqVKFEiVKqNs/+OCDAqsDvPpxnjt3jqpVq2qNqnl5eZGRkcH58+fVda6urtnOA322/DJlyqhpn133suc988ZfjUaTZZu5uTkdO3akQ4cOfPXVV6xYsSLPT29xd3d/YZpixYpptZWTkxNmZmacO3cuj7XPm7i4uGx/hi5cuKDVWfTsedZoNFhaWhboz/PLkiC0iJiamrJ//35atmyJs7Mz48ePJygoiBYtWhRI/uXLl2fKlCmMHj0aKysrBgwY8FL5uLu7M2/ePAICAqhWrRo//vgjs2bN0kpTr149+vbtS4cOHShTpkyWOUTw9If8119/xdzcnI8++ogmTZpQqVIlwsLCXqpeQghRlJ6fIgUUyRSpgmBsbJzt00VSUlKyTHMqquPM6RnSxYr934BsZrD4bJ1eZWpaZsBna2ub7fZFixaxbds2atWqxS+//EKdOnU4duzYC/MtiOdhZ440PuvZxzIWtNc15e9FZDi+iLi6urJjx45st61ZsybLuudff3nx4kWt5V9++SXLPhMmTGDChAl5rlNO836GDBnCkCFDtNb5+flpLQcHBxMcHJxrHW1tbfn111/zXB8hhHhbFC9e/JWmP5mYmFC2bFmioqKoV6+euj4qKkrtQXNwcGDjxo08fPgQfX19AE6cOPHCvB0dHfnzzz+zrP/zzz8LfPjV2dmZsLAw7t27p/aGRkVFoaOjg4ODQ4GWlR8ZGRmsWrUKW1tbrSfRPM/NzQ03NzcGDRpEixYt2Lx5M56enujp6b1SkPbkyRNOnDihDr3Hx8eTnJysDvmXLl2a//3vf1r7nDp1SitYzMvPmJOTE1FRUVrroqKicHBw0LrZ+U0lPaFCCCFEPtnY2HDgwAGuXbuW5RXGz0tMTFRvLsn83Lt3j/79+7N48WJ++eUX4uPjmTZtGqdOnVJvYGnXrh0ZGRkMGzaMc+fOsWfPHvXO5+yGmDP16dOHXbt2MX/+fM6dO8eZM2fU6WDZPfbvVbRr1w59fX0GDhzImTNnOHjwIGPGjOGLL74osLf55cWdO3e4du0aFy9eZMeOHXz++efExMSwYMGCbIOxS5cuMX36dI4ePcrly5fZu3cvCQkJ6jxSGxsbLl26RGxsLLdu3dJ6hnVeFC9enLFjxxIdHc3JkycZOHAgHh4ealD64YcfcuLECcLCwrhw4QIBAQFZglJbW1uOHz9OYmIit27dyjYo9vf358CBAwQFBXH+/HlCQ0NZvXo1/v7++arv6yI9oe+oxMTEXG8A+uuvv3IconjTHBjlI3fKC/EWy+/D498GU6ZMYeLEifzwww9YW1sTHR2dY9qJEydmWfff//6XXr16kZKSwqRJk7h58ybOzs6EhISoD1g3MTEhJCSEkSNH0qhRI1xdXRk2bBh9+/bVmif6PC8vL9avX09QUBDBwcHo6Ojg6urKpk2bCuw+hEyGhoaEhYUxfvx4mjdvjoGBAa1atSryZz5//vnnan0qVKhA/fr1mTt3rtbD6p9lYGBAXFwcYWFh3LlzBysrK7p3707Xrl0BaNWqFVu3bqVt27YkJyezaNEirRt9XsTAwIABAwbQt29frl69Su3atbVGOBs1asTQoUOZOnUqDx8+pFOnTrRv317rEYb+/v4MGDAAb29vHjx4kO1UgerVq7Ny5UoCAwOZN28eVlZWjBw5Ml91fZ00SubMXfFOefLkSZbh8WfZ29trzcV5E6WkpGBmZkZycrIEoUK8BS5cuICJicnrrsY7bePGjQwaNIj4+Pg8vxlPiMKSmpqabaCf1+v3mx2FiJdWrFix1/7oBSGEEK8mLCwMOzs7rK2tOX36NNOmTePTTz+VAFS8EyQIFUIIId5Q169fJzAwkOvXr2NlZcWnn36a5UHwQrytZDhevLEyu/N7/RCFnmHe3vm75LOCne8khMg7GY4X4v3yqsPxcne8EEIIIYQochKECiGEEEKIIidB6Dvk4sWLaDSaPD3MOL8iIiLQaDQvfB6eEEIIIUReSBD6hnrTgr569eqRlJSEmZnZ666KEEIIId4Bcne8yBM9PT3Kli37uqshhBBCiHeE9IQWkgYNGjBgwAAGDBiAmZkZFhYWTJgwgcyHEYSEhODp6am+P/jLL7/k+vXrwNNh9YYNGwJgbm6ORqOhW7duwNP34QYGBuLo6Ii+vj62trbMmDFDq+wLFy7QsGFDDA0NcXd35/Dhw3mq86VLl2jdujXm5uYYGRlRtWpVtm3bBmTtmW3QoAEajSbLJ/MB+Xfv3uXrr7+mTJkymJqa0qhRI06ePPkqp1QIIYQQ7xAJQgvR2rVrKVasGFFRUSxcuJB58+axatUqAB4/fsy0adM4efIkv/zyCxcvXlQDTRsbGzZt2gTA2bNnSUpKYuHChQCMGTOG2bNnM2HCBP766y/+85//YGVlpVXuuHHjGD58OCdOnMDZ2ZlOnTrx5MmTF9a3f//+PHz4kP379xMbG0tAQADGxtk/Gmnz5s0kJSWpn7Zt2+Li4qLW5YsvvuD69ets376d6OhoatasSePGjbl9+3aO5T98+JCUlBStjxBCiJcXGRmJpaUlycnJBZJfYmIilpaWxMbGvlF5Pc/Dw4Ply5ery5aWlmqnSmGXJfJOhuMLkY2NDfPnz0ej0eDi4kJsbCzz58+nV69e9OjRQ01XqVIlFi1aRK1atUhLS8PY2JhSpUoBT39xSpYsCTx9HtfChQtZsmSJ+n5bBwcHPvzwQ61yhw8fzieffAI8fb9x1apViY+Pp3LlyrnWNzExkXbt2uHm5qbWKyeZ9QOYP38+e/bs4ciRIxgYGHDw4EGioqK4fv06+vr6AMydO5dffvmFjRs30rt372zznDVrVpG/b1gIUfjik4sXaXmOZo/zvc+1a9dYsGABu3bt4urVq1hYWFCtWjV69+7NRx99lKc8QkNDGT9+PPHx8fkuv7DUqlWL2NjYIn31sa+vL4cOHQKeTuUqVaoU1atXp2PHjrRq1UpNV758eWJjYylduvQL80xMTMTT05Pw8HD1GpWbnTt3Ymho+PIHkY2c2rcwynpfSE9oIapTpw4ajUZdrlu3LnFxcaSnpxMdHU3r1q2xtbXFxMQEHx8f4OkvWk7OnDnDw4cPady4ca7lVq9eXf2/tbU1gDrUn5tvvvmG6dOnU79+fSZNmsSff/75wn22b9/O6NGjCQsLw9nZGYCTJ0+SlpZG6dKlMTY2Vj8JCQmcP38+x7zGjBlDcnKy+rl8+fILyxdCiFeVmJhI06ZNOXjwIJMmTWLfvn2EhoZSv359Ro8e/bqr99IeP36Mnp4eVlZWWteiouDn50dsbCxRUVGsXr0aZ2dn+vTpw7Bhw9Q0urq6WFlZUaxYwfWHPXr0CAALC4siCwyLsqx3jQShr8G///5L8+bNMTU15ccff+To0aP8/PPPwP/9AmUnr+8KLl78/3odMr94MjIyXrjf119/zYULF9QvD09PTxYvXpxj+r/++ouOHTsye/ZsmjVrpq5PS0vD2tqaEydOaH3Onj3LiBEjcsxPX18fU1NTrY8QQhS2UaNGodFo2LFjB61bt8bBwYHKlSvTr18/tm/frqYLDg7Gx8cHe3t7atSowciRI0lLSwOeDnt/8803pKSkYGlpiaWlJYGBgcDTqUaTJk2ievXq2Nvb8/HHHxMZGalVh5CQEGrUqIGdnR1du3YlODgYR0dHrTTff/89tWrVonz58tStW5cNGzZobbe0tOT777/Hz88Pe3t75s+fn+1w/JEjR/D19cXOzg4nJyfat2+vzvffs2cPrVq1wtHRERcXFzp37kxCQkK+z6mBgQFWVlaUK1cOT09PJk6cyNy5cwkJCWHfvn1A1uH4u3fv0rdvX1xdXbG1taV27dqsX78eAE9PTwAaN26MpaUlvr6+AAwcOJAuXbowf/583NzcqFevHpD9EPm1a9fo2LEjtra2eHp6smXLFnVbducpNjYWS0tLEhMTc23f58v6+++/6dKlC/b29lSqVImvv/5aqyMoMDCQhg0bsmHDBjw8PHBwcKB3797qz9L7RILQQnTkyBGt5T/++AMnJyf+97//cevWLWbPno23tzeVK1fO0lOpp6cHQHp6urrOyckJAwMDwsPDC63ONjY29O3bl82bNzNs2DBWrlyZbbqbN2/SunVr2rVrx5AhQ7S21axZk6tXr1KsWDEcHR21PhYWFoVWdyGEyK87d+6wZ88eevTogZGRUZbtzz6WTkdHhxkzZrB//34WL17MwYMHmTp1KvB02Hv69OmYmJgQGxtLbGws/v7+wNNRnmPHjrFixQr27t1L69at6dixIxcuXACeXitGjBhBr1692LNnDz4+PixYsECrHlu3bmX8+PH069eP/fv306VLFwYNGsTBgwe10s2ZM4eWLVsSERHBl19+meV4YmNj+fzzz3F2dmbr1q1s2bKF5s2bq9eae/fu0bdvX37//Xc2btyIjo4O3bp1y1NHxot06NCBkiVLsnXr1my3z549m3PnzrF+/XoOHjxIYGCgOvVr586dAGzcuJHY2Fi+//57db8DBw4QHx/PTz/9xA8//JBj+QEBAbRq1Yq9e/fy+eef07t3b86dO5enuufWvs/KyMigS5cu3Llzh19//ZWffvqJS5cuZZmGdvHiRbZv384PP/zAjz/+yKFDh1i0aFGe6vIukTmhhSgxMZGhQ4fSp08fjh8/zuLFiwkKCsLW1hY9PT0WL15M3759OXXqFNOmTdPa187ODo1Gw2+//UbLli0xMDDA2NiYUaNGMXLkSPT09Khfvz43btzg9OnT9OzZ85XrO3jwYFq0aIGzszN37txh7969uLpm/y72du3aYWhoyOTJk7l69aq6vkyZMjRp0oS6devi6+tLYGAgzs7O/PPPP2zdupXPPvtM/YtWCCFet4SEBBRFydLrmJ0+ffqo/7e1tWXMmDGMGDGCwMBA9PT0MDU1RaPRaN0s+vfff7N+/XpiYmLUx9z179+fPXv2sH79esaNG8d3331H48aN6d+/P/B0rv/Ro0fZtWuXms+yZcvo2LGjej9Bv379iI6OZtmyZVr3BbRr145OnTqpy5cuXdI6hqVLl+Lu7q724gFa9wu0bt1aK/2CBQtwdXXl7NmzOV4P8kpHRwcHB4ccp1pduXIFNzc3atSoATw9x5ky542am5tnuRnX0NCQ+fPnq503OWndujVfffUVAKNHj2bfvn2sWrVK61zkJKf2fd7+/fs5c+YMx44do3z58gAsWbIEb29vYmJi+OCDDwBQFIXFixerN/9+8cUXHDhw4IX1eNdIEFqIunTpwoMHD/Dy8kJXV5dBgwbRu3dvNBoNa9asYezYsSxatIiaNWsyd+5cPv30U3Xf8uXLM2XKFEaPHk337t3p0qULa9asYcKECRQrVoyJEyfyzz//YG1tTd++fQukvunp6fTv35+///4bU1NTPv74Y+bPn59t2v379wNPg+VnJSQkYG9vz7Zt2xg3bhzdu3fnxo0blC1blo8++ijXX14hhChqmY/Ny4t9+/axaNEi4uLiSE1NJT09nX///Zf79+/nOCfwzJkzpKenU6dOHa31jx49Unv54uPjadmypdb2mjVragWhcXFx+Pn5aaXx8vJixYoVWuvc3d1zPYZTp05lCTSfdeHCBQICAoiOjub27dtqD+iVK1deOQiFp+c7p/mp3bp1o0ePHvz55580aNCAFi1a4OXl9cI8XV1dXxiAAlk6QDw9PTl16lTeKp5HcXFxlC9fXg1AAVxcXDAzM+PcuXNqEGpjY6P19BkrKytu3LhRoHV5G0gQWoiKFy/OggULCA4OzrKtU6dOWn+tQtYvwwkTJjBhwgStdTo6OowbN45x48ZlydPe3j5LHiVLlszzl2xu8z8bNGiglc+L8jQxMWHRokXv5fCCEOLtUalSJTQazQvvaE9MTOSrr76iW7dujBkzBnNzc44cOcLgwYN5/Djnu/Hv3buHrq4uu3fvRkdHewZcdsP/r+pFN8iUKFEi1+1fffUVFSpUYN68eZQtW5aMjAw++uijXO9XyKv09HQuXLig9nQ+r3HjxkRHR7N792727dvH559/Tvfu3V/41JSCuCkos22evbbl5dGGL+v5m7E0Gk2+/iB6V8icUCGEEO8tc3NzGjZsyOrVq7l3716W7Zk3qpw8eZKMjAymTJmCp6cnDg4OWlOR4GnHw7Pz+AHc3NxIT0/n5s2bVKpUSeuTOTLk6OjIiRMntPaLiYnRWnZycuLo0aNa66KionBxccnX8VapUiXHYd/bt28THx/P0KFD+eijj3B2di7QV0eHhYVx9+5drcc0Pc/CwoKOHTsSHBzMtGnTCAkJAf7vPolXmZsaHR2ttXzs2DGcnJyA/xvuv3btmrr9+V7S7Nr3eU5OTly5coUrV66o686ePUtycnK+2+p9ID2h75EWLVrk+OUzduxYxo4dW8Q1ypu5rV3kTnkhRKGZPXs2rVq14uOPP2bkyJFUrVqVJ0+esG/fPtasWUNkZCQVK1bk8ePHrFq1imbNmhEVFcXatWu18rGxseHevXvs37+fqlWrYmBggIODA+3atWPAgAFMnjwZNzc3bt26xYEDB6hSpQpNmzalZ8+etGnThuDgYJo3b86BAwfYs2eP1rB1//796dWrF9WqVcPHx4edO3eydetWNm7cmK9jHTRoED4+PowcOZKuXbuip6fHwYMH+fTTTzE3N6dUqVKsW7cOS0tLrly5wvTp01/qnD548IBr166Rnp7OP//8w7Zt21i+fDndunXL8mzrTLNnz8bd3R0XFxcePXrErl271Ef/WVhYYGBgwJ49e7C2tqZEiRL5vi5s2bKFGjVqULt2bTZu3EhMTIx6A1jFihUpX748c+bMYezYsZw/fz7LKGZ27ft8L6yPjw+urq7069eP6dOn8+TJE0aNGkW9evVy7AF+n0kQWkgiIiJedxWyWLVqFQ8ePMh227MPnxdCiIL0Mg+PL0r29vaEh4czf/58Jk+ezLVr1yhdurTWDTzVqlVj6tSpLF68mBkzZlCnTh3GjRvHgAED1Hy8vLzo2rUrvXv35vbt2wwfPpyRI0eyaNEi5s2bx+TJk0lKSqJUqVJ4eHjQtGlTAGrXrs2cOXOYO3cus2fPpkGDBvTp04fvvvtOzbtly5ZMnz6dZcuWMX78eGxtbVm4cCH169fP17E6ODiwYcMGZsyYwccff0yJEiWoWbMmbdu2RUdHh+XLlzNu3Dh8fHxwcHBg5syZ6uOQ8iMkJISQkBD09PQwNzfH3d2dFStWqC9SyY6enh4zZszg8uXLlChRgtq1a6uPPipWrBgzZswgKCiIgIAA6tSpwy+//JKvOo0YMYKff/6ZUaNGYWVlxfLly9XeyeLFi/Ptt98ycuRIGjRoQI0aNRgzZozWTb85te+zNBoN69atY+zYsXz66afo6OjQqFEjZs6cma+6vi80yvs4CUG8FVJSUjAzMyM5OVl6QoV4C1y4cAETE5PXXY13wtChQ4mLi9N6lqUQb5rU1NRs366Y1+u39IQKIYQQr9nSpUvx8fHB0NCQPXv2EBYWRkBAwOuulhCFSoJQIYQQ4jWLiYlh6dKlpKWlYWdnx4wZM9RnWgrxrpIgVAghhHjNVq1a9bqrIESRk0c0CSGEEEKIIidBqBBCiAKR05twhBDvplf9nZcgVAghRIHQaDSv9DBxIcTbIyMjQ4JQIYQQbwYrKytSU1MlEBXiHZeRkUFqaqr61q+XJTcmCSGEKBAGBgaUL1+ea9euoSjKe/kubCHedRqNBo1GQ/ny5TEwMHilvCQIFUIIUWAMDAywt7d/3dUQQrwFZDheCCGEEEIUOQlChRBCCCFEkZMgVAghhBBCFDkJQoUQQgghRJGTG5PEGyvzztqUlJTXXBMhhBBC5FXmdftFT8iQIFS8sW7dugWAjY3Na66JEEIIIfIrNTUVMzOzHLdLECreWKVKlQIgMTEx1x9i8fqkpKRgY2PD5cuXMTU1fd3VEdmQNnrzSRu9HaSd8k5RFFJTUylXrlyu6SQIFW8sHZ2nU5bNzMzkF/4NZ2pqKm30hpM2evNJG70dpJ3yJi+dR3JjkhBCCCGEKHIShAohhBBCiCInQah4Y+nr6zNp0iT09fVfd1VEDqSN3nzSRm8+aaO3g7RTwdMoL7p/XgghhBBCiAImPaFCCCGEEKLISRAqhBBCCCGKnAShQgghhBCiyEkQKoQQQgghipwEoaLILF26FHt7e0qUKEHt2rWJiorKNf1PP/1E5cqVKVGiBG5ubmzbtk1ru6IoTJw4EWtrawwMDGjSpAlxcXGFeQjvhYJup27duqHRaLQ+H3/8cWEewjsvP210+vRp2rVrh729PRqNhgULFrxynuLFCrqNJk+enOX3qHLlyoV4BO++/LTRypUr8fb2xtzcHHNzc5o0aZIlvVyT8k+CUFEkwsLCGDp0KJMmTeL48eO4u7vTvHlzrl+/nm36Q4cO0alTJ3r27ElMTAy+vr74+vpy6tQpNU1gYCCLFi3i22+/5ciRIxgZGdG8eXP+/fffojqsd05htBPAxx9/TFJSkvpZv359URzOOym/bXT//n0qVarE7NmzKVu2bIHkKXJXGG0EULVqVa3fo4MHDxbWIbzz8ttGERERdOrUib1793L48GFsbGxo1qwZV65cUdPINeklKEIUAS8vL6V///7qcnp6ulKuXDll1qxZ2aZv37698sknn2itq127ttKnTx9FURQlIyNDKVu2rDJnzhx1+927dxV9fX1l/fr1hXAE74eCbidFUZSuXbsqbdq0KZT6vo/y20bPsrOzU+bPn1+geYqsCqONJk2apLi7uxdgLd9vr/oz/+TJE8XExERZu3atoihyTXpZ0hMqCt2jR4+Ijo6mSZMm6jodHR2aNGnC4cOHs93n8OHDWukBmjdvrqZPSEjg6tWrWmnMzMyoXbt2jnmK3BVGO2WKiIjA0tISFxcX+vXrx61btwr+AN4DL9NGryPP91lhns+4uDjKlStHpUqV6Ny5M4mJia9a3fdSQbTR/fv3efz4MaVKlQLkmvSyJAgVhe7mzZukp6djZWWltd7KyoqrV69mu8/Vq1dzTZ/5b37yFLkrjHaCp0Px69atIzw8nICAAPbt20eLFi1IT08v+IN4x71MG72OPN9nhXU+a9euzZo1a9ixYwfBwcEkJCTg7e1Namrqq1b5vVMQbTRq1CjKlSunBp1yTXo5xV53BYQQ77aOHTuq/3dzc6N69eo4ODgQERFB48aNX2PNhHh7tGjRQv1/9erVqV27NnZ2dmzYsIGePXu+xpq9f2bPnk1oaCgRERGUKFHidVfnrSY9oaLQWVhYoKury7Vr17TWX7t2LcdJ+GXLls01fea/+clT5K4w2ik7lSpVwsLCgvj4+Fev9HvmZdrodeT5Piuq81myZEmcnZ3l9+glvEobzZ07l9mzZ/P7779TvXp1db1ck16OBKGi0Onp6eHh4UF4eLi6LiMjg/DwcOrWrZvtPnXr1tVKD7Br1y41fcWKFSlbtqxWmpSUFI4cOZJjniJ3hdFO2fn777+5desW1tbWBVPx98jLtNHryPN9VlTnMy0tjfPnz8vv0Ut42TYKDAxk2rRp7NixA09PT61tck16Sa/7zijxfggNDVX09fWVNWvWKH/99ZfSu3dvpWTJksrVq1cVRVEUPz8/ZfTo0Wr6yMhIpVixYsrcuXOVM2fOKJMmTVKKFy+uxMbGqmlmz56tlCxZUvn111+VP//8U2nTpo1SsWJF5cGDB0V+fO+Kgm6n1NRUZfjw4crhw4eVhIQEZffu3UrNmjUVJycn5d9//30tx/i2y28bPXz4UImJiVFiYmIUa2trZfjw4UpMTIwSFxeX5zxF/hRGGw0bNkyJiIhQEhISlMjISKVJkyaKhYWFcv369SI/vndBftto9uzZip6enrJx40YlKSlJ/aSmpmqlkWtS/kgQKorM4sWLFVtbW0VPT0/x8vJS/vjjD3Wbj4+P0rVrV630GzZsUJydnRU9PT2latWqytatW7W2Z2RkKBMmTFCsrKwUfX19pXHjxsrZs2eL4lDeaQXZTvfv31eaNWumlClTRilevLhiZ2en9OrVS4KbV5SfNkpISFCALB8fH5885ynyr6DbqEOHDoq1tbWip6enlC9fXunQoYMSHx9fhEf07slPG9nZ2WXbRpMmTVLTyDUp/zSKoiivoQNWCCGEEEK8x2ROqBBCCCGEKHIShAohhBBCiCInQagQQgghhChyEoQKIYQQQogiJ0GoEEIIIYQochKECiGEEEKIIidBqBBCCCGEKHIShAohhBBCiCInQagQQoi3kqIo9O7dm1KlSqHRaDhx4sTrrpIQIh8kCBVCiCLSrVs3fH19X3c1cnTx4sW3KpjbsWMHa9as4bfffiMpKYlq1aoVWN65nYsGDRowePDgLOtnzZqFrq4uc+bMybJtzZo1aDQaNBoNOjo6WFtb06FDBxITEwuszkK8bSQIFUIIwaNHj153FfLt/PnzWFtbU69ePcqWLUuxYsXynYeiKDx58qRA6rN69WpGjhzJ6tWrs91uampKUlISV65cYdOmTZw9e5YvvviiQMoW4m0kQagQQrwmDRo0YODAgQwePBhzc3OsrKxYuXIl9+7do3v37piYmODo6Mj27dvVfSIiItBoNGzdupXq1atTokQJ6tSpw6lTp7Ty3rRpE1WrVkVfXx97e3uCgoK0ttvb2zNt2jS6dOmCqakpvXv3pmLFigB88MEHaDQaGjRoAMDRo0dp2rQpFhYWmJmZ4ePjw/Hjx7Xy02g0rFq1is8++wxDQ0OcnJz473//q5Xm9OnTtGrVClNTU0xMTPD29ub8+fPq9lWrVuHq6kqJEiWoXLkyy5Yty/HcdevWjYEDB5KYmIhGo8He3h6Ahw8f8s0332BpaUmJEiX48MMPOXr0aJbzt337djw8PNDX1+fgwYMvaKkX27dvHw8ePGDq1KmkpKRw6NChLGk0Gg1ly5ZVA+eePXsSFRVFSkrKK5cvxNtIglAhhHiN1q5di4WFBVFRUQwcOJB+/frxxRdfUK9ePY4fP06zZs3w8/Pj/v37WvuNGDGCoKAgjh49SpkyZWjdujWPHz8GIDo6mvbt29OxY0diY2OZPHkyEyZMYM2aNVp5zJ07F3d3d2JiYpgwYQJRUVEA7N69m6SkJDZv3gxAamoqXbt25eDBg/zxxx84OTnRsmVLUlNTtfKbMmUK7du3588//6Rly5Z07tyZ27dvA3DlyhU++ugj9PX12bNnD9HR0fTo0UPthfzxxx+ZOHEiM2bM4MyZM8ycOZMJEyawdu3abM/bwoULmTp1KhUqVCApKUkNNEeOHMmmTZtYu3Ytx48fx9HRkebNm6v1yDR69Ghmz57NmTNnqF69en6bLYvvvvuOTp06Ubx4cTp16sR3332Xa/rr16/z888/o6uri66u7iuXL8RbSRFCCFEkunbtqrRp00Zd9vHxUT788EN1+cmTJ4qRkZHi5+enrktKSlIA5fDhw4qiKMrevXsVQAkNDVXT3Lp1SzEwMFDCwsIURVGUL7/8UmnatKlW2SNGjFCqVKmiLtvZ2Sm+vr5aaRISEhRAiYmJyfU40tPTFRMTE2XLli3qOkAZP368upyWlqYAyvbt2xVFUZQxY8YoFStWVB49epRtng4ODsp//vMfrXXTpk1T6tatm2M95s+fr9jZ2WmVWbx4ceXHH39U1z169EgpV66cEhgYqCjK/52/X375JddjzO1c+Pj4KIMGDVKXk5OTFQMDA+XEiROKoihKTEyMYmxsrKSmpqppvv/+ewVQjIyMFENDQwVQAOWbb77JtR5CvMukJ1QIIV6jZ3vhdHV1KV26NG5ubuo6Kysr4GnP2bPq1q2r/r9UqVK4uLhw5swZAM6cOUP9+vW10tevX5+4uDjS09PVdZ6ennmq47Vr1+jVqxdOTk6YmZlhampKWlpalptqnj0WIyMjTE1N1XqfOHECb29vihcvniX/e/fucf78eXr27ImxsbH6mT59utZw/YucP3+ex48fax178eLF8fLyUs9Nfo89L9avX4+DgwPu7u4A1KhRAzs7O8LCwrTSmZiYcOLECY4dO0ZQUBA1a9ZkxowZBVYPId42+Z/FLYQQosA8H5RpNBqtdRqNBoCMjIwCL9vIyChP6bp27cqtW7dYuHAhdnZ26OvrU7du3Sw3M2V3LJn1NjAwyDH/tLQ0AFauXEnt2rW1thXWUPWLjt3U1BSA5OTkLNvu3r2LmZmZuvzdd99x+vRprRujMjIyWL16NT179lTX6ejo4OjoCICrqyvnz5+nX79+hISEvNKxCPG2kp5QIYR4C/3xxx/q/+/cucO5c+dwdXUFngY4kZGRWukjIyNxdnbONajT09MD0Ootzdz3m2++oWXLlurNTjdv3sxXfatXr86BAwfUeavPsrKyoly5cly4cAFHR0etT+bNUnnh4OCAnp6e1rE/fvyYo0ePUqVKlXzVt1SpUlhYWBAdHa21PiUlhfj4eJydnQGIjY3l2LFjREREcOLECfUTERHB4cOH+d///pdjGaNHjyYsLCzLTV5CvC+kJ1QIId5CU6dOpXTp0lhZWTFu3DgsLCzUZ5AOGzaMWrVqMW3aNDp06MDhw4dZsmRJrnebA1haWmJgYMCOHTuoUKECJUqUwMzMDCcnJ0JCQvD09CQlJYURI0bk2rOZnQEDBrB48WI6duzImDFjMDMz448//sDLywsXFxemTJnCN998g5mZGR9//DEPHz7k2LFj3Llzh6FDh+apDCMjI/r168eIESMoVaoUtra2BAYGcv/+fa0eybwaOnQoM2fOxMrKijp16nDr1i2mTZtGmTJlaNu2LfC0F9TLy4uPPvooy/61atXiu+++y/a5oQA2NjZ89tlnTJw4kd9++y3f9RPibSc9oUII8RaaPXs2gwYNwsPDg6tXr7Jlyxa1J7NmzZps2LCB0NBQqlWrxsSJE5k6dSrdunXLNc9ixYqxaNEili9fTrly5WjTpg3wNNC6c+cONWvWxM/PT30EUn6ULl2aPXv2kJaWho+PDx4eHqxcuVIdwv/6669ZtWoV33//PW5ubvj4+LBmzZp89YRmnpd27drh5+dHzZo1iY+PZ+fOnZibm+crH3h6p/2kSZMICAigevXqtGvXDiMjI/bu3YuBgQGPHj3ihx9+oF27dtnu365dO9atW5dt72+mIUOGsHXrVvXJBEK8TzSKoiivuxJCCCHyJiIigoYNG3Lnzh1Kliz5uqsjhBAvTXpChRBCCCFEkZMgVAghhBBCFDkZjhdCCCGEEEVOekKFEEIIIUSRkyBUCCGEEEIUOQlChRBCCCFEkZMgVAghhBBCFDkJQoUQQgghRJGTIFQIIYQQQhQ5CUKFEEIIIUSRkyBUCCGEEEIUuf8H952tY3ZCknQAAAAASUVORK5CYII=\n"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"print(plt.style.available)\n",
"plt.style.use('default')\n",
"\n",
"\n",
"tex_fonts = {\n",
" # Use LaTeX to write all text\n",
" \"text.usetex\": True,\n",
" \"font.family\": \"serif\",\n",
" # Use 10pt font in plots, to match 10pt font in document\n",
" \"axes.labelsize\": 10,\n",
" \"font.size\": 10,\n",
" # Make the legend/label fonts a little smaller\n",
" \"legend.fontsize\": 8,\n",
" \"xtick.labelsize\": 8,\n",
" \"ytick.labelsize\": 8\n",
"}\n",
"\n",
"# plt.rcParams.update(tex_fonts)\n",
"\n",
"Path('figures').mkdir(exist_ok=True)\n",
"\n",
"ax = optuna.visualization.matplotlib.plot_param_importances(study, params=[x for x in best_params if x not in ['sampler', '']], target_name='UAR') # [best_params[-2], best_params[17]])\n",
"ax.set_title(\"\")\n",
"\n",
"labels = [item.get_text() if item.get_text() != 'target_mel_length_in_seconds' else 'mel_length_in_s' for item in ax.get_yticklabels()]\n",
"labels = [item if item != 'random_apply_chance' else 'aug_apply_chance' for item in labels]\n",
"labels = [item if item != 'lr' else 'learning_rate' for item in labels]\n",
"\n",
"ax.set_yticklabels(labels)\n",
"\n",
"plt.savefig('figures/parameter_importance_vit.png')\n",
"plt.show()\n"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%% Seaborn Settings\n"
}
}
},
{
"cell_type": "code",
"execution_count": 76,
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"dimensions": [
{
"label": "UAR",
"range": [
0.0,
0.6927034854888916
],
"values": [
0.581264853477478,
0.6620493531227112,
0.6540717482566833,
0.6186755895614624,
0.6415265798568726,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6927034854888916,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6650981903076172,
0.0,
0.0,
0.0,
0.6542699933052063,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6611570119857788,
0.6700482964515686,
0.6608946919441223,
0.6708074808120728,
0.0,
0.0,
0.0,
0.0,
0.6633903980255127,
0.0,
0.6609240770339966,
0.0,
0.6843862533569336,
0.0,
0.0,
0.0,
0.0,
0.6787439584732056,
0.660468339920044,
0.0,
0.6824361681938171,
0.0,
0.0,
0.6694961786270142,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6863189935684204,
0.0,
0.0,
0.0,
0.0,
0.6750852465629578,
0.0,
0.6791986227035522
]
},
{
"label": "attn_depth",
"range": [
2,
14
],
"values": [
2,
6,
6,
2,
14,
6,
10,
6,
10,
14,
2,
6,
6,
10,
6,
10,
2,
6,
10,
6,
2,
6,
6,
6,
6,
10,
2,
6,
6,
2,
10,
10,
10,
14,
6,
6,
10,
6,
6,
10,
14,
10,
10,
10,
6,
14,
10,
6,
10,
10,
10,
10,
10,
10,
10,
14,
10,
10,
10,
10,
10,
10,
10,
10,
10,
6,
6,
6
]
},
{
"label": "batch_size",
"range": [
5,
50
],
"values": [
45,
10,
20,
20,
5,
45,
25,
10,
45,
25,
10,
15,
15,
35,
5,
35,
15,
10,
15,
5,
30,
15,
20,
10,
15,
20,
5,
10,
25,
15,
30,
20,
20,
15,
20,
20,
25,
20,
30,
25,
20,
25,
25,
20,
15,
10,
15,
50,
20,
20,
30,
20,
20,
20,
20,
25,
15,
35,
25,
15,
10,
10,
10,
15,
20,
5,
5,
5
]
},
{
"label": "dropout",
"range": [
0.0,
0.3
],
"values": [
0.0,
0.15000000000000002,
0.05,
0.05,
0.3,
0.1,
0.15000000000000002,
0.1,
0.2,
0.1,
0.25,
0.0,
0.2,
0.0,
0.15000000000000002,
0.2,
0.05,
0.25,
0.15000000000000002,
0.1,
0.25,
0.05,
0.0,
0.05,
0.0,
0.05,
0.1,
0.0,
0.15000000000000002,
0.0,
0.2,
0.05,
0.05,
0.05,
0.1,
0.05,
0.1,
0.05,
0.0,
0.1,
0.05,
0.1,
0.1,
0.1,
0.05,
0.1,
0.15000000000000002,
0.0,
0.1,
0.15000000000000002,
0.1,
0.1,
0.1,
0.15000000000000002,
0.1,
0.1,
0.15000000000000002,
0.05,
0.1,
0.05,
0.1,
0.1,
0.1,
0.15000000000000002,
0.1,
0.05,
0.15000000000000002,
0.1
]
},
{
"label": "embedding_size",
"range": [
12,
60
],
"values": [
48,
60,
60,
36,
48,
36,
48,
12,
24,
36,
60,
60,
60,
60,
48,
60,
24,
48,
60,
24,
48,
60,
60,
60,
48,
60,
60,
48,
60,
48,
12,
60,
60,
60,
60,
48,
60,
60,
36,
48,
60,
48,
48,
60,
60,
60,
60,
60,
60,
36,
60,
60,
60,
60,
60,
60,
48,
60,
60,
60,
60,
60,
60,
60,
60,
60,
48,
24
]
},
{
"label": "head_dim",
"range": [
1,
5
],
"values": [
1,
5,
2,
4,
1,
2,
3,
3,
2,
1,
5,
5,
5,
4,
5,
4,
5,
4,
5,
4,
5,
2,
2,
3,
2,
3,
4,
2,
1,
1,
3,
3,
5,
5,
5,
5,
4,
5,
4,
5,
2,
5,
5,
5,
5,
4,
5,
5,
4,
4,
5,
4,
4,
4,
5,
4,
5,
4,
5,
5,
4,
4,
4,
4,
5,
3,
3,
3
]
},
{
"label": "heads",
"range": [
2,
16
],
"values": [
16,
14,
6,
10,
8,
2,
14,
2,
14,
14,
10,
6,
6,
6,
12,
4,
8,
16,
12,
4,
12,
6,
4,
8,
6,
4,
10,
8,
6,
16,
2,
4,
4,
6,
6,
4,
8,
6,
2,
6,
4,
6,
6,
8,
8,
8,
10,
8,
10,
10,
12,
10,
10,
10,
12,
8,
10,
8,
4,
12,
10,
10,
12,
10,
8,
10,
10,
12
]
},
{
"label": "lat_dim",
"range": [
1,
5
],
"values": [
3,
5,
3,
5,
4,
4,
2,
5,
5,
5,
1,
3,
1,
2,
4,
2,
4,
3,
2,
4,
3,
3,
3,
2,
4,
3,
1,
2,
4,
3,
3,
3,
3,
3,
3,
3,
3,
2,
4,
3,
2,
3,
3,
3,
4,
3,
2,
3,
4,
5,
4,
4,
4,
4,
5,
4,
4,
4,
5,
4,
2,
2,
1,
3,
2,
3,
3,
3
]
},
{
"label": "loudness_ratio",
"range": [
0.0,
0.5
],
"values": [
0.1,
0.30000000000000004,
0.30000000000000004,
0.0,
0.0,
0.2,
0.30000000000000004,
0.30000000000000004,
0.0,
0.5,
0.5,
0.4,
0.4,
0.4,
0.4,
0.2,
0.4,
0.5,
0.2,
0.30000000000000004,
0.1,
0.30000000000000004,
0.4,
0.30000000000000004,
0.2,
0.4,
0.30000000000000004,
0.1,
0.5,
0.2,
0.4,
0.4,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.2,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.4,
0.30000000000000004,
0.2,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.4,
0.2,
0.30000000000000004,
0.4,
0.4,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.2,
0.30000000000000004,
0.30000000000000004,
0.2,
0.4,
0.5,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.2,
0.1,
0.2
]
},
{
"label": "lr",
"range": [
-4.984511763536566,
-3.000223358892898
],
"ticktext": [
"1.04e-05",
"0.0001",
"0.000999"
],
"tickvals": [
-4.984511763536566,
-4,
-3.000223358892898
],
"values": [
-3.5343708946190353,
-3.6595622836795316,
-3.013389920218341,
-3.9221096096897528,
-3.667070694860366,
-3.4139539347416137,
-4.211772799627613,
-4.557097330213709,
-3.1269832185726507,
-4.665562701642856,
-4.186773139642232,
-3.0014470854173387,
-3.2758995595202522,
-3.80227599774593,
-3.0011579749057877,
-4.93986952603013,
-3.2734290104920563,
-4.110756096886293,
-3.6008770552556766,
-4.4597008958986635,
-3.8420708448087053,
-3.024550846159397,
-3.1836857176780353,
-3.4029264885001953,
-3.0358202564509815,
-3.389443332014659,
-3.0017635250941246,
-3.714186596558458,
-3.1960684635984418,
-3.5083974103588886,
-3.512936793597023,
-3.3426296450656046,
-3.1120025287885635,
-3.093959164759565,
-3.0076194097032283,
-3.0038225427447838,
-3.1987314442574184,
-3.105191977460414,
-3.2914918381168623,
-3.000223358892898,
-3.1180263170560147,
-3.0300313965683903,
-3.202927958434565,
-3.0080688417495365,
-3.0961263005673185,
-3.270264719447809,
-3.483495794268321,
-3.155427727030296,
-3.0052220728243215,
-3.30783837986136,
-4.377867318334353,
-3.0015183951732047,
-3.0769357502507675,
-4.984511763536566,
-3.2350698209725395,
-3.992437443692004,
-4.779175759312008,
-3.0682250843501655,
-3.1363104958322463,
-3.004151265944081,
-3.364423116829935,
-3.3785060292863522,
-3.178810228883658,
-3.603444130709224,
-3.4484316953679297,
-3.0619773880873575,
-3.0412740111037357,
-3.0060338238510136
]
},
{
"label": "lr_scheduler_para...",
"range": [
0.8,
1.0
],
"values": [
0.91,
0.98,
1.0,
0.92,
0.9500000000000001,
0.8,
0.8300000000000001,
0.8600000000000001,
0.8700000000000001
]
},
{
"label": "mask_ratio",
"range": [
0.0,
0.5
],
"values": [
0.5,
0.1,
0.4,
0.4,
0.1,
0.4,
0.2,
0.1,
0.2,
0.4,
0.0,
0.30000000000000004,
0.0,
0.30000000000000004,
0.1,
0.30000000000000004,
0.2,
0.30000000000000004,
0.1,
0.5,
0.0,
0.4,
0.30000000000000004,
0.5,
0.4,
0.2,
0.30000000000000004,
0.4,
0.2,
0.5,
0.30000000000000004,
0.2,
0.1,
0.1,
0.1,
0.0,
0.1,
0.4,
0.4,
0.1,
0.30000000000000004,
0.1,
0.1,
0.0,
0.0,
0.0,
0.2,
0.0,
0.4,
0.2,
0.0,
0.4,
0.4,
0.5,
0.4,
0.30000000000000004,
0.4,
0.30000000000000004,
0.5,
0.4,
0.1,
0.1,
0.1,
0.1,
0.2,
0.1,
0.0,
0.2
]
},
{
"label": "mlp_dim",
"range": [
1,
5
],
"values": [
2,
5,
2,
5,
5,
3,
4,
3,
5,
2,
4,
1,
1,
1,
4,
1,
2,
4,
3,
1,
5,
2,
2,
1,
2,
1,
3,
2,
1,
2,
2,
1,
1,
1,
2,
2,
1,
2,
3,
2,
1,
2,
3,
2,
2,
3,
2,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
2,
1,
1,
1,
1,
1,
1,
2,
1
]
},
{
"label": "noise_ratio",
"range": [
0.0,
0.5
],
"values": [
0.1,
0.1,
0.0,
0.4,
0.4,
0.2,
0.1,
0.4,
0.4,
0.30000000000000004,
0.0,
0.0,
0.1,
0.0,
0.2,
0.1,
0.0,
0.2,
0.1,
0.30000000000000004,
0.0,
0.0,
0.0,
0.1,
0.0,
0.1,
0.2,
0.5,
0.0,
0.1,
0.0,
0.1,
0.1,
0.1,
0.0,
0.0,
0.0,
0.0,
0.0,
0.1,
0.2,
0.1,
0.1,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.30000000000000004,
0.0,
0.0,
0.1,
0.0,
0.0,
0.1,
0.0,
0.1,
0.2,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.5,
0.0
]
},
{
"label": "patch_size",
"range": [
6,
12
],
"values": [
9,
12,
6,
6,
6,
6,
9,
12,
12,
6,
12,
9,
9,
12,
9,
12,
9,
12,
9,
12,
9,
6,
6,
9,
6,
9,
6,
12,
9,
9,
12,
9,
9,
9,
6,
6,
6,
6,
6,
9,
6,
9,
9,
9,
9,
9,
6,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9,
9
]
},
{
"label": "random_apply_chance",
"range": [
0.1,
0.5
],
"values": [
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.5,
0.4,
0.30000000000000004,
0.5,
0.1,
0.2,
0.5,
0.1,
0.2,
0.2,
0.2,
0.4,
0.2,
0.4,
0.1,
0.2,
0.30000000000000004,
0.4,
0.30000000000000004,
0.30000000000000004,
0.2,
0.30000000000000004,
0.4,
0.2,
0.30000000000000004,
0.2,
0.30000000000000004,
0.1,
0.4,
0.4,
0.4,
0.30000000000000004,
0.30000000000000004,
0.4,
0.30000000000000004,
0.5,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.4,
0.5,
0.4,
0.4,
0.4,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.5,
0.4,
0.1,
0.2,
0.4,
0.4,
0.4,
0.4,
0.5,
0.4,
0.5,
0.2
]
},
{
"label": "sampler",
"range": [
0,
1
],
"ticktext": [
null,
"WeightedRandomSampler"
],
"tickvals": [
0,
1
],
"values": [
0,
0,
1,
0,
1,
1,
0,
0,
1,
0,
0,
1,
1,
1,
1,
0,
0,
1,
0,
1,
1,
1,
1,
1,
1,
1,
0,
1,
1,
0,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"label": "scheduler",
"range": [
0,
1
],
"ticktext": [
"LambdaLR",
null
],
"tickvals": [
0,
1
],
"values": [
0,
1,
1,
1,
0,
0,
1,
0,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1,
0,
1,
1,
1,
1,
1,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
1,
0,
1,
1,
1,
1,
1,
1,
1,
1
]
},
{
"label": "shift_ratio",
"range": [
0.0,
0.5
],
"values": [
0.30000000000000004,
0.4,
0.30000000000000004,
0.30000000000000004,
0.4,
0.4,
0.4,
0.4,
0.1,
0.4,
0.5,
0.1,
0.0,
0.1,
0.1,
0.2,
0.0,
0.2,
0.5,
0.2,
0.0,
0.30000000000000004,
0.30000000000000004,
0.2,
0.5,
0.30000000000000004,
0.1,
0.4,
0.2,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.4,
0.30000000000000004,
0.4,
0.4,
0.2,
0.4,
0.5,
0.4,
0.4,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.30000000000000004,
0.2,
0.1,
0.1,
0.1,
0.1,
0.1,
0.0,
0.1,
0.1,
0.0,
0.2,
0.0,
0.1,
0.2,
0.1,
0.2,
0.1,
0.2,
0.1,
0.1,
0.1
]
},
{
"label": "target_mel_length...",
"range": [
0.2,
1.5
],
"values": [
0.5,
0.7,
1.5,
1.2,
0.6000000000000001,
0.8,
0.5,
0.7,
0.2,
0.6000000000000001,
1.1,
1.5,
1.1,
1.5,
0.30000000000000004,
0.9000000000000001,
1.3,
0.9000000000000001,
0.4,
1.0,
1.3,
1.5,
1.4000000000000001,
1.5,
0.7,
1.3,
1.4000000000000001,
0.8,
1.0,
0.5,
1.4000000000000001,
1.3,
1.5,
1.5,
1.5,
1.5,
1.4000000000000001,
1.2,
1.2,
1.5,
1.4000000000000001,
1.5,
1.5,
1.4000000000000001,
1.4000000000000001,
1.2,
1.3,
1.4000000000000001,
1.5,
1.3,
1.1,
1.5,
1.4000000000000001,
1.5,
1.5,
1.4000000000000001,
1.5,
1.3,
1.4000000000000001,
1.5,
1.4000000000000001,
1.4000000000000001,
1.3,
1.2,
1.5,
1.4000000000000001,
1.3,
1.4000000000000001
]
}
],
"labelangle": 30,
"labelside": "bottom",
"line": {
"color": [
0.581264853477478,
0.6620493531227112,
0.6540717482566833,
0.6186755895614624,
0.6415265798568726,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6927034854888916,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6650981903076172,
0.0,
0.0,
0.0,
0.6542699933052063,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6611570119857788,
0.6700482964515686,
0.6608946919441223,
0.6708074808120728,
0.0,
0.0,
0.0,
0.0,
0.6633903980255127,
0.0,
0.6609240770339966,
0.0,
0.6843862533569336,
0.0,
0.0,
0.0,
0.0,
0.6787439584732056,
0.660468339920044,
0.0,
0.6824361681938171,
0.0,
0.0,
0.6694961786270142,
0.0,
0.0,
0.0,
0.0,
0.0,
0.6863189935684204,
0.0,
0.0,
0.0,
0.0,
0.6750852465629578,
0.0,
0.6791986227035522
],
"colorbar": {
"title": {
"text": "UAR"
}
},
"colorscale": [
[
0.0,
"rgb(247,251,255)"
],
[
0.125,
"rgb(222,235,247)"
],
[
0.25,
"rgb(198,219,239)"
],
[
0.375,
"rgb(158,202,225)"
],
[
0.5,
"rgb(107,174,214)"
],
[
0.625,
"rgb(66,146,198)"
],
[
0.75,
"rgb(33,113,181)"
],
[
0.875,
"rgb(8,81,156)"
],
[
1.0,
"rgb(8,48,107)"
]
],
"reversescale": false,
"showscale": true
},
"type": "parcoords"
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
],
"sequentialminus": [
[
0.0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1.0,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Parallel Coordinate Plot"
}
}
},
"text/html": "<div> <div id=\"c25088f8-2bbe-49df-ad48-590f5f55d4b4\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"c25088f8-2bbe-49df-ad48-590f5f55d4b4\")) { Plotly.newPlot( \"c25088f8-2bbe-49df-ad48-590f5f55d4b4\", [{\"dimensions\": [{\"label\": \"UAR\", \"range\": [0.0, 0.6927034854888916], \"values\": [0.581264853477478, 0.6620493531227112, 0.6540717482566833, 0.6186755895614624, 0.6415265798568726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6927034854888916, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6650981903076172, 0.0, 0.0, 0.0, 0.6542699933052063, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6611570119857788, 0.6700482964515686, 0.6608946919441223, 0.6708074808120728, 0.0, 0.0, 0.0, 0.0, 0.6633903980255127, 0.0, 0.6609240770339966, 0.0, 0.6843862533569336, 0.0, 0.0, 0.0, 0.0, 0.6787439584732056, 0.660468339920044, 0.0, 0.6824361681938171, 0.0, 0.0, 0.6694961786270142, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6863189935684204, 0.0, 0.0, 0.0, 0.0, 0.6750852465629578, 0.0, 0.6791986227035522]}, {\"label\": \"attn_depth\", \"range\": [2, 14], \"values\": [2, 6, 6, 2, 14, 6, 10, 6, 10, 14, 2, 6, 6, 10, 6, 10, 2, 6, 10, 6, 2, 6, 6, 6, 6, 10, 2, 6, 6, 2, 10, 10, 10, 14, 6, 6, 10, 6, 6, 10, 14, 10, 10, 10, 6, 14, 10, 6, 10, 10, 10, 10, 10, 10, 10, 14, 10, 10, 10, 10, 10, 10, 10, 10, 10, 6, 6, 6]}, {\"label\": \"batch_size\", \"range\": [5, 50], \"values\": [45, 10, 20, 20, 5, 45, 25, 10, 45, 25, 10, 15, 15, 35, 5, 35, 15, 10, 15, 5, 30, 15, 20, 10, 15, 20, 5, 10, 25, 15, 30, 20, 20, 15, 20, 20, 25, 20, 30, 25, 20, 25, 25, 20, 15, 10, 15, 50, 20, 20, 30, 20, 20, 20, 20, 25, 15, 35, 25, 15, 10, 10, 10, 15, 20, 5, 5, 5]}, {\"label\": \"dropout\", \"range\": [0.0, 0.3], \"values\": [0.0, 0.15000000000000002, 0.05, 0.05, 0.3, 0.1, 0.15000000000000002, 0.1, 0.2, 0.1, 0.25, 0.0, 0.2, 0.0, 0.15000000000000002, 0.2, 0.05, 0.25, 0.15000000000000002, 0.1, 0.25, 0.05, 0.0, 0.05, 0.0, 0.05, 0.1, 0.0, 0.15000000000000002, 0.0, 0.2, 0.05, 0.05, 0.05, 0.1, 0.05, 0.1, 0.05, 0.0, 0.1, 0.05, 0.1, 0.1, 0.1, 0.05, 0.1, 0.15000000000000002, 0.0, 0.1, 0.15000000000000002, 0.1, 0.1, 0.1, 0.15000000000000002, 0.1, 0.1, 0.15000000000000002, 0.05, 0.1, 0.05, 0.1, 0.1, 0.1, 0.15000000000000002, 0.1, 0.05, 0.15000000000000002, 0.1]}, {\"label\": \"embedding_size\", \"range\": [12, 60], \"values\": [48, 60, 60, 36, 48, 36, 48, 12, 24, 36, 60, 60, 60, 60, 48, 60, 24, 48, 60, 24, 48, 60, 60, 60, 48, 60, 60, 48, 60, 48, 12, 60, 60, 60, 60, 48, 60, 60, 36, 48, 60, 48, 48, 60, 60, 60, 60, 60, 60, 36, 60, 60, 60, 60, 60, 60, 48, 60, 60, 60, 60, 60, 60, 60, 60, 60, 48, 24]}, {\"label\": \"head_dim\", \"range\": [1, 5], \"values\": [1, 5, 2, 4, 1, 2, 3, 3, 2, 1, 5, 5, 5, 4, 5, 4, 5, 4, 5, 4, 5, 2, 2, 3, 2, 3, 4, 2, 1, 1, 3, 3, 5, 5, 5, 5, 4, 5, 4, 5, 2, 5, 5, 5, 5, 4, 5, 5, 4, 4, 5, 4, 4, 4, 5, 4, 5, 4, 5, 5, 4, 4, 4, 4, 5, 3, 3, 3]}, {\"label\": \"heads\", \"range\": [2, 16], \"values\": [16, 14, 6, 10, 8, 2, 14, 2, 14, 14, 10, 6, 6, 6, 12, 4, 8, 16, 12, 4, 12, 6, 4, 8, 6, 4, 10, 8, 6, 16, 2, 4, 4, 6, 6, 4, 8, 6, 2, 6, 4, 6, 6, 8, 8, 8, 10, 8, 10, 10, 12, 10, 10, 10, 12, 8, 10, 8, 4, 12, 10, 10, 12, 10, 8, 10, 10, 12]}, {\"label\": \"lat_dim\", \"range\": [1, 5], \"values\": [3, 5, 3, 5, 4, 4, 2, 5, 5, 5, 1, 3, 1, 2, 4, 2, 4, 3, 2, 4, 3, 3, 3, 2, 4, 3, 1, 2, 4, 3, 3, 3, 3, 3, 3, 3, 3, 2, 4, 3, 2, 3, 3, 3, 4, 3, 2, 3, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4, 5, 4, 2, 2, 1, 3, 2, 3, 3, 3]}, {\"label\": \"loudness_ratio\", \"range\": [0.0, 0.5], \"values\": [0.1, 0.30000000000000004, 0.30000000000000004, 0.0, 0.0, 0.2, 0.30000000000000004, 0.30000000000000004, 0.0, 0.5, 0.5, 0.4, 0.4, 0.4, 0.4, 0.2, 0.4, 0.5, 0.2, 0.30000000000000004, 0.1, 0.30000000000000004, 0.4, 0.30000000000000004, 0.2, 0.4, 0.30000000000000004, 0.1, 0.5, 0.2, 0.4, 0.4, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.2, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.4, 0.30000000000000004, 0.2, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.4, 0.2, 0.30000000000000004, 0.4, 0.4, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.2, 0.30000000000000004, 0.30000000000000004, 0.2, 0.4, 0.5, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.2, 0.1, 0.2]}, {\"label\": \"lr\", \"range\": [-4.984511763536566, -3.000223358892898], \"ticktext\": [\"1.04e-05\", \"0.0001\", \"0.000999\"], \"tickvals\": [-4.984511763536566, -4, -3.000223358892898], \"values\": [-3.5343708946190353, -3.6595622836795316, -3.013389920218341, -3.9221096096897528, -3.667070694860366, -3.4139539347416137, -4.211772799627613, -4.557097330213709, -3.1269832185726507, -4.665562701642856, -4.186773139642232, -3.0014470854173387, -3.2758995595202522, -3.80227599774593, -3.0011579749057877, -4.93986952603013, -3.2734290104920563, -4.110756096886293, -3.6008770552556766, -4.4597008958986635, -3.8420708448087053, -3.024550846159397, -3.1836857176780353, -3.4029264885001953, -3.0358202564509815, -3.389443332014659, -3.0017635250941246, -3.714186596558458, -3.1960684635984418, -3.5083974103588886, -3.512936793597023, -3.3426296450656046, -3.1120025287885635, -3.093959164759565, -3.0076194097032283, -3.0038225427447838, -3.1987314442574184, -3.105191977460414, -3.2914918381168623, -3.000223358892898, -3.1180263170560147, -3.0300313965683903, -3.202927958434565, -3.0080688417495365, -3.0961263005673185, -3.270264719447809, -3.483495794268321, -3.155427727030296, -3.0052220728243215, -3.30783837986136, -4.377867318334353, -3.0015183951732047, -3.0769357502507675, -4.984511763536566, -3.2350698209725395, -3.992437443692004, -4.779175759312008, -3.0682250843501655, -3.1363104958322463, -3.004151265944081, -3.364423116829935, -3.3785060292863522, -3.178810228883658, -3.603444130709224, -3.4484316953679297, -3.0619773880873575, -3.0412740111037357, -3.0060338238510136]}, {\"label\": \"lr_scheduler_para...\", \"range\": [0.8, 1.0], \"values\": [0.91, 0.98, 1.0, 0.92, 0.9500000000000001, 0.8, 0.8300000000000001, 0.8600000000000001, 0.8700000000000001]}, {\"label\": \"mask_ratio\", \"range\": [0.0, 0.5], \"values\": [0.5, 0.1, 0.4, 0.4, 0.1, 0.4, 0.2, 0.1, 0.2, 0.4, 0.0, 0.30000000000000004, 0.0, 0.30000000000000004, 0.1, 0.30000000000000004, 0.2, 0.30000000000000004, 0.1, 0.5, 0.0, 0.4, 0.30000000000000004, 0.5, 0.4, 0.2, 0.30000000000000004, 0.4, 0.2, 0.5, 0.30000000000000004, 0.2, 0.1, 0.1, 0.1, 0.0, 0.1, 0.4, 0.4, 0.1, 0.30000000000000004, 0.1, 0.1, 0.0, 0.0, 0.0, 0.2, 0.0, 0.4, 0.2, 0.0, 0.4, 0.4, 0.5, 0.4, 0.30000000000000004, 0.4, 0.30000000000000004, 0.5, 0.4, 0.1, 0.1, 0.1, 0.1, 0.2, 0.1, 0.0, 0.2]}, {\"label\": \"mlp_dim\", \"range\": [1, 5], \"values\": [2, 5, 2, 5, 5, 3, 4, 3, 5, 2, 4, 1, 1, 1, 4, 1, 2, 4, 3, 1, 5, 2, 2, 1, 2, 1, 3, 2, 1, 2, 2, 1, 1, 1, 2, 2, 1, 2, 3, 2, 1, 2, 3, 2, 2, 3, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1]}, {\"label\": \"noise_ratio\", \"range\": [0.0, 0.5], \"values\": [0.1, 0.1, 0.0, 0.4, 0.4, 0.2, 0.1, 0.4, 0.4, 0.30000000000000004, 0.0, 0.0, 0.1, 0.0, 0.2, 0.1, 0.0, 0.2, 0.1, 0.30000000000000004, 0.0, 0.0, 0.0, 0.1, 0.0, 0.1, 0.2, 0.5, 0.0, 0.1, 0.0, 0.1, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.1, 0.2, 0.1, 0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.30000000000000004, 0.0, 0.0, 0.1, 0.0, 0.0, 0.1, 0.0, 0.1, 0.2, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.0]}, {\"label\": \"patch_size\", \"range\": [6, 12], \"values\": [9, 12, 6, 6, 6, 6, 9, 12, 12, 6, 12, 9, 9, 12, 9, 12, 9, 12, 9, 12, 9, 6, 6, 9, 6, 9, 6, 12, 9, 9, 12, 9, 9, 9, 6, 6, 6, 6, 6, 9, 6, 9, 9, 9, 9, 9, 6, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9]}, {\"label\": \"random_apply_chance\", \"range\": [0.1, 0.5], \"values\": [0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.5, 0.4, 0.30000000000000004, 0.5, 0.1, 0.2, 0.5, 0.1, 0.2, 0.2, 0.2, 0.4, 0.2, 0.4, 0.1, 0.2, 0.30000000000000004, 0.4, 0.30000000000000004, 0.30000000000000004, 0.2, 0.30000000000000004, 0.4, 0.2, 0.30000000000000004, 0.2, 0.30000000000000004, 0.1, 0.4, 0.4, 0.4, 0.30000000000000004, 0.30000000000000004, 0.4, 0.30000000000000004, 0.5, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.4, 0.5, 0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.4, 0.1, 0.2, 0.4, 0.4, 0.4, 0.4, 0.5, 0.4, 0.5, 0.2]}, {\"label\": \"sampler\", \"range\": [0, 1], \"ticktext\": [null, \"WeightedRandomSampler\"], \"tickvals\": [0, 1], \"values\": [0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]}, {\"label\": \"scheduler\", \"range\": [0, 1], \"ticktext\": [\"LambdaLR\", null], \"tickvals\": [0, 1], \"values\": [0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1]}, {\"label\": \"shift_ratio\", \"range\": [0.0, 0.5], \"values\": [0.30000000000000004, 0.4, 0.30000000000000004, 0.30000000000000004, 0.4, 0.4, 0.4, 0.4, 0.1, 0.4, 0.5, 0.1, 0.0, 0.1, 0.1, 0.2, 0.0, 0.2, 0.5, 0.2, 0.0, 0.30000000000000004, 0.30000000000000004, 0.2, 0.5, 0.30000000000000004, 0.1, 0.4, 0.2, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.4, 0.30000000000000004, 0.4, 0.4, 0.2, 0.4, 0.5, 0.4, 0.4, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.30000000000000004, 0.2, 0.1, 0.1, 0.1, 0.1, 0.1, 0.0, 0.1, 0.1, 0.0, 0.2, 0.0, 0.1, 0.2, 0.1, 0.2, 0.1, 0.2, 0.1, 0.1, 0.1]}, {\"label\": \"target_mel_length...\", \"range\": [0.2, 1.5], \"values\": [0.5, 0.7, 1.5, 1.2, 0.6000000000000001, 0.8, 0.5, 0.7, 0.2, 0.6000000000000001, 1.1, 1.5, 1.1, 1.5, 0.30000000000000004, 0.9000000000000001, 1.3, 0.9000000000000001, 0.4, 1.0, 1.3, 1.5, 1.4000000000000001, 1.5, 0.7, 1.3, 1.4000000000000001, 0.8, 1.0, 0.5, 1.4000000000000001, 1.3, 1.5, 1.5, 1.5, 1.5, 1.4000000000000001, 1.2, 1.2, 1.5, 1.4000000000000001, 1.5, 1.5, 1.4000000000000001, 1.4000000000000001, 1.2, 1.3, 1.4000000000000001, 1.5, 1.3, 1.1, 1.5, 1.4000000000000001, 1.5, 1.5, 1.4000000000000001, 1.5, 1.3, 1.4000000000000001, 1.5, 1.4000000000000001, 1.4000000000000001, 1.3, 1.2, 1.5, 1.4000000000000001, 1.3, 1.4000000000000001]}], \"labelangle\": 30, \"labelside\": \"bottom\", \"line\": {\"color\": [0.581264853477478, 0.6620493531227112, 0.6540717482566833, 0.6186755895614624, 0.6415265798568726, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6927034854888916, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6650981903076172, 0.0, 0.0, 0.0, 0.6542699933052063, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6611570119857788, 0.6700482964515686, 0.6608946919441223, 0.6708074808120728, 0.0, 0.0, 0.0, 0.0, 0.6633903980255127, 0.0, 0.6609240770339966, 0.0, 0.6843862533569336, 0.0, 0.0, 0.0, 0.0, 0.6787439584732056, 0.660468339920044, 0.0, 0.6824361681938171, 0.0, 0.0, 0.6694961786270142, 0.0, 0.0, 0.0, 0.0, 0.0, 0.6863189935684204, 0.0, 0.0, 0.0, 0.0, 0.6750852465629578, 0.0, 0.6791986227035522], \"colorbar\": {\"title\": {\"text\": \"UAR\"}}, \"colorscale\": [[0.0, \"rgb(247,251,255)\"], [0.125, \"rgb(222,235,247)\"], [0.25, \"rgb(198,219,239)\"], [0.375, \"rgb(158,202,225)\"], [0.5, \"rgb(107,174,214)\"], [0.625, \"rgb(66,146,198)\"], [0.75, \"rgb(33,113,181)\"], [0.875, \"rgb(8,81,156)\"], [1.0, \"rgb(8,48,107)\"]], \"reversescale\": false, \"showscale\": true}, \"type\": \"parcoords\"}], {\"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Parallel Coordinate Plot\"}}, {\"responsive\": true} ).then(function(){\n \nvar gd = document.getElementById('c25088f8-2bbe-49df-ad48-590f5f55d4b4');\nvar x = new MutationObserver(function (mutations, observer) {{\n var display = window.getComputedStyle(gd).display;\n if (!display || display === 'none') {{\n console.log([gd, 'removed!']);\n Plotly.purge(gd);\n observer.disconnect();\n }}\n}});\n\n// Listen for the removal of the full notebook cells\nvar notebookContainer = gd.closest('#notebook-container');\nif (notebookContainer) {{\n x.observe(notebookContainer, {childList: true});\n}}\n\n// Listen for the clearing of the current output cell\nvar outputEl = gd.closest('.output');\nif (outputEl) {{\n x.observe(outputEl, {childList: true});\n}}\n\n }) }; }); </script> </div>"
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"optuna.visualization.plot_parallel_coordinate(study, target_name='UAR') # [best_params[-2], best_params[17]])\n"
],
"metadata": {
"collapsed": false,
"pycharm": {
"name": "#%%\n"
}
}
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.6"
}
},
"nbformat": 4,
"nbformat_minor": 0
}