2021-03-28 11:49:17 +02:00

197 lines
7.9 KiB
Python

from collections import defaultdict
from pathlib import Path
from abc import ABC
import torch
import pandas as pd
from ml_lib.modules.util import LightningBaseModule
from util.loss_mixin import LossMixin
from util.optimizer_mixin import OptimizerMixin
class TrainMixin:
def training_step(self, batch_xy, batch_nb, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_files, batch_x, batch_y = batch_xy
y = self(batch_x).main_out
if self.params.n_classes <= 2:
loss = self.bce_loss(y.squeeze().float(), batch_y.float())
else:
if self.params.loss == 'focal_loss_rob':
labels_one_hot = torch.nn.functional.one_hot(batch_y, num_classes=self.params.n_classes)
loss = self.__getattribute__(self.params.loss)(y, labels_one_hot)
else:
loss = self.__getattribute__(self.params.loss)(y, batch_y.long())
return dict(loss=loss)
def training_epoch_end(self, outputs):
assert isinstance(self, LightningBaseModule)
keys = list(outputs[0].keys())
summary_dict = {f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
summary_dict.update(epoch=self.current_epoch)
self.log_dict(summary_dict)
class ValMixin:
def validation_step(self, batch_xy, batch_idx, *args, **kwargs):
assert isinstance(self, LightningBaseModule)
batch_files, batch_x, batch_y = batch_xy
model_out = self(batch_x)
y = model_out.main_out
sorted_y = defaultdict(list)
sorted_batch_y = dict()
for idx, file_name in enumerate(batch_files):
sorted_y[file_name].append(y[idx])
sorted_batch_y.update({file_name: batch_y[idx]})
sorted_y = dict(sorted_y)
for file_name in sorted_y:
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
target_y = torch.stack(tuple(sorted_batch_y.values())).long()
if self.params.n_classes <= 2:
mean_sorted_y = torch.stack([x.mean(dim=0) if x.shape[0] > 1 else x for x in sorted_y.values()])
self.metrics.update(mean_sorted_y, target_y)
else:
y_max = torch.stack(
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
).squeeze()
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=self.params.n_classes).float()
self.metrics.update(y_one_hot, target_y)
if self.params.n_classes <= 2:
val_loss = self.bce_loss(y.squeeze().float(), batch_y.float())
else:
val_loss = self.ce_loss(y, batch_y.long())
return dict(batch_files=batch_files, val_loss=val_loss,
batch_idx=batch_idx, y=y, batch_y=batch_y)
def validation_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
summary_dict = dict()
keys = list(outputs[0].keys())
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
sorted_y = defaultdict(list)
sorted_batch_y = dict()
for output in outputs:
for idx, file_name in enumerate(output['batch_files']):
sorted_y[file_name].append(output['y'][idx])
sorted_batch_y.update({file_name: output['batch_y'][idx]})
sorted_y = dict(sorted_y)
sorted_batch_y = torch.stack(tuple(sorted_batch_y.values())).long()
for file_name in sorted_y:
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
if self.params.n_classes <= 2:
mean_sorted_y = torch.stack([x.mean(dim=0) if x.shape[0] > 1 else x for x in sorted_y.values()]).squeeze()
max_vote_loss = self.bce_loss(mean_sorted_y.float(), sorted_batch_y.float())
# Sklearn Scores
additional_scores = self.additional_scores(dict(y=mean_sorted_y, batch_y=sorted_batch_y))
else:
y_max = torch.stack(
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
).squeeze()
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=self.params.n_classes).float()
max_vote_loss = self.ce_loss(y_one_hot, sorted_batch_y)
# Sklearn Scores
additional_scores = self.additional_scores(dict(y=y_one_hot, batch_y=sorted_batch_y))
summary_dict.update(val_max_vote_loss=max_vote_loss, **additional_scores)
summary_dict.update({f'mean_{key}': torch.mean(torch.stack([output[key]
for output in outputs]))
for key in keys if 'loss' in key}
)
pl_metrics, pl_images = self.metrics.compute_and_prepare()
self.metrics.reset()
summary_dict.update(**pl_metrics)
summary_dict.update(epoch=self.current_epoch)
self.log_dict(summary_dict)
# For Debugging:
# print(f'Summary Metrics are: {summary_dict}')
for name, image in pl_images.items():
self.logger.log_image(name, image, step=self.global_step)
pass
class TestMixin:
def test_step(self, batch_xy, batch_idx, *_, **__):
assert isinstance(self, LightningBaseModule)
batch_files, batch_x, batch_y = batch_xy
model_out = self(batch_x)
y = model_out.main_out
return dict(batch_files=batch_files, batch_idx=batch_idx, y=y)
def test_epoch_end(self, outputs, *_, **__):
assert isinstance(self, LightningBaseModule)
# No logging, just inference.
sorted_y = defaultdict(list)
for output in outputs:
for idx, file_name in enumerate(output['batch_files']):
sorted_y[file_name].append(output['y'][idx].cpu())
sorted_y = dict(sorted_y)
for file_name in sorted_y:
sorted_y.update({file_name: torch.stack(sorted_y[file_name])})
if self.params.n_classes > 2:
pred = torch.stack(
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
).squeeze().cpu()
class_names = {val: key for val, key in
enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])}
else:
pred = torch.stack([x.mean(dim=0) if x.shape[0] > 1 else x for x in sorted_y.values()]).squeeze()
pred = torch.where(pred > 0.5, 1, 0)
class_names = {val: key for val, key in enumerate(['negative', 'positive'])}
df = pd.DataFrame(data=dict(filename=[Path(x).name for x in sorted_y.keys()],
prediction=[class_names[x.item()] for x in pred.cpu()]))
result_file = Path(self.logger.log_dir / 'predictions.csv')
if result_file.exists():
try:
result_file.unlink()
except:
print('File already existed')
pass
with result_file.open(mode='wb') as csv_file:
df.to_csv(index=False, path_or_buf=csv_file)
with result_file.open(mode='rb') as csv_file:
try:
self.logger.neptunelogger.log_artifact(csv_file)
except:
print('No possible to send to neptune')
pass
class CombinedModelMixins(LossMixin,
TrainMixin,
ValMixin,
TestMixin,
OptimizerMixin,
LightningBaseModule,
ABC):
pass