import inspect from argparse import Namespace from torch import nn from ml_lib.modules.blocks import LinearModule from ml_lib.modules.model_parts import CNNEncoder from ml_lib.modules.util import (LightningBaseModule) from util.module_mixins import CombinedModelMixins class CNNBaseline(CombinedModelMixins, LightningBaseModule ): def __init__(self, in_shape, n_classes, weight_init, activation, use_bias, use_norm, dropout, lat_dim, filters, lr, weight_decay, sto_weight_avg, lr_warm_restart_epochs, opt_reset_interval, loss, scheduler, lr_scheduler_parameter ): # TODO: Move this to parent class, or make it much easieer to access.... a = dict(locals()) params = {arg: a[arg] for arg in inspect.signature(self.__init__).parameters.keys() if arg != 'self'} super(CNNBaseline, self).__init__(params) # Model # ============================================================================= # Additional parameters self.in_shape = in_shape assert len(self.in_shape) == 3, 'There need to be three Dimensions' channels, height, width = self.in_shape # Modules with Parameters self.encoder = CNNEncoder(in_shape=self.in_shape, **self.params.module_kwargs) # Make Decision between binary and Multiclass Classification logits = n_classes if n_classes > 2 else 1 module_kwargs = self.params.module_kwargs module_kwargs.update(activation=(nn.Softmax if logits > 1 else nn.Sigmoid)) self.classifier = LinearModule(self.encoder.shape, logits, **module_kwargs) def forward(self, x, mask=None, return_attn_weights=False): """ :param x: the sequence to the encoder (required). :param mask: the mask for the src sequence (optional). :return: """ tensor = self.encoder(x) tensor = self.classifier(tensor) return Namespace(main_out=tensor)