[project] neptune_key = eyJhcGlfYWRkcmVzcyI6Imh0dHBzOi8vdWkubmVwdHVuZS5haSIsImFwaV91cmwiOiJodHRwczovL3VpLm5lcHR1bmUuYWkiLCJhcGlfa2V5IjoiZmI0OGMzNzUtOTg1NS00Yzg2LThjMzYtMWFiYjUwMDUyMjVlIn0= debug = False eval = True seed = 69 owner = si11ium model_name = CNNBaseline data_name = CCSLibrosaDatamodule [data] num_worker = 10 data_root = data variable_length = False target_mel_length_in_seconds = 0.7 n_mels = 128 sr = 16000 hop_length = 128 n_fft = 512 random_apply_chance = 0.7 loudness_ratio = 0.0 shift_ratio = 0.3 noise_ratio = 0.0 mask_ratio = 0.0 [Tester] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True use_residual = True dropout = 0.21 lat_dim = 32 patch_size = 8 attn_depth = 12 heads = 4 embedding_size = 128 mlp_dim = 32 [CNNBaseline] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True dropout = 0.2 lat_dim = 32 filters = [16, 32, 64, 128] [BandwiseConvClassifier] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True dropout = 0.2 lat_dim = 32 filters = [16, 32, 64, 128] [VisualTransformer] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True use_residual = True dropout = 0.2 lat_dim = 32 mlp_dim = 32 head_dim = 32 patch_size = 8 attn_depth = 12 heads = 4 embedding_size = 33 [VerticalVisualTransformer] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True use_residual = True dropout = 0.2 mlp_dim = 6 lat_dim = 6 head_dim = 6 patch_size = 8 attn_depth = 6 heads = 4 embedding_size = 30 [HorizontalVisualTransformer] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True use_residual = True dropout = 0.3 lat_dim = 256 patch_size = 8 attn_depth = 12 heads = 6 embedding_size = 32 [VisualPerformer] weight_init = xavier_normal_ activation = gelu use_bias = True use_norm = True use_residual = True dropout = 0.2 lat_dim = 32 patch_size = 8 attn_depth = 12 heads = 4 embedding_size = 30 [train] outpath = output version = None sampler = WeightedRandomSampler loss = ce_loss sto_weight_avg = False weight_decay = 0 opt_reset_interval = 0 max_epochs = 150 batch_size = 30 lr = 0.001 scheduler='LambdaLR' use_residual = True lr_scheduler_parameter = 0.97 num_sanity_val_steps = 2 check_val_every_n_epoch = 5 checkpoint_callback = True gradient_clip_val = 0