Final Train Runs
This commit is contained in:
37
multi_run.py
37
multi_run.py
@ -10,23 +10,30 @@ import itertools
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Set new values
|
||||
hparams_dict = dict(model_name=['VisualTransformer'],
|
||||
max_epochs=[150],
|
||||
hparams_dict = dict(seed=range(10),
|
||||
model_name=['VisualTransformer'],
|
||||
batch_size=[50],
|
||||
random_apply_chance=[0.5],
|
||||
loudness_ratio=[0],
|
||||
shift_ratio=[0.3],
|
||||
noise_ratio=[0.3],
|
||||
mask_ratio=[0.3],
|
||||
lr=[0.001],
|
||||
dropout=[0.2],
|
||||
lat_dim=[32, 64],
|
||||
patch_size=[8, 12],
|
||||
attn_depth=[12],
|
||||
heads=[6],
|
||||
embedding_size=[16, 32],
|
||||
max_epochs=[250],
|
||||
random_apply_chance=[0.3], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1),
|
||||
loudness_ratio=[0], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1),
|
||||
shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1),
|
||||
noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1),
|
||||
mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1),
|
||||
lr=[5e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3),
|
||||
dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05),
|
||||
lat_dim=[32], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1),
|
||||
mlp_dim=[16], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1),
|
||||
head_dim=[6], # 2 ** trial.suggest_int('head_dim', 1, 5, step=1),
|
||||
patch_size=[12], # trial.suggest_int('patch_size', 6, 12, step=3),
|
||||
attn_depth=[10], # trial.suggest_int('attn_depth', 2, 14, step=4),
|
||||
heads=[6], # trial.suggest_int('heads', 2, 16, step=2),
|
||||
scheduler=['CosineAnnealingWarmRestarts'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']),
|
||||
lr_scheduler_parameter=[25], # [0.98],
|
||||
embedding_size=[30], # trial.suggest_int('embedding_size', 12, 64, step=12),
|
||||
loss=['ce_loss'],
|
||||
sampler=['WeightedRandomSampler']
|
||||
sampler=['WeightedRandomSampler'],
|
||||
# rial.suggest_categorical('sampler', [None, 'WeightedRandomSampler']),
|
||||
weight_decay=[0], # trial.suggest_loguniform('weight_decay', 1e-20, 1e-1),
|
||||
)
|
||||
|
||||
keys, values = zip(*hparams_dict.items())
|
||||
|
Reference in New Issue
Block a user