Final Train Runs
This commit is contained in:
116
models/transformer_model_vertical.py
Normal file
116
models/transformer_model_vertical.py
Normal file
@@ -0,0 +1,116 @@
|
||||
import inspect
|
||||
from argparse import Namespace
|
||||
|
||||
import warnings
|
||||
|
||||
import torch
|
||||
from einops import repeat
|
||||
from torch import nn
|
||||
|
||||
from ml_lib.metrics.multi_class_classification import MultiClassScores
|
||||
from ml_lib.modules.blocks import TransformerModule
|
||||
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x, SlidingWindow)
|
||||
from util.module_mixins import CombinedModelMixins
|
||||
|
||||
MIN_NUM_PATCHES = 16
|
||||
|
||||
|
||||
class VerticalVisualTransformer(CombinedModelMixins, LightningBaseModule):
|
||||
|
||||
def __init__(self, in_shape, n_classes, weight_init, activation,
|
||||
embedding_size, heads, attn_depth, patch_size, use_residual,
|
||||
use_bias, use_norm, dropout, lat_dim, features, loss, scheduler,
|
||||
lr, weight_decay, sto_weight_avg, lr_warm_restart_epochs, opt_reset_interval):
|
||||
|
||||
# TODO: Move this to parent class, or make it much easieer to access... But How...
|
||||
a = dict(locals())
|
||||
params = {arg: a[arg] for arg in inspect.signature(self.__init__).parameters.keys() if arg != 'self'}
|
||||
super(VerticalVisualTransformer, self).__init__(params)
|
||||
|
||||
self.in_shape = in_shape
|
||||
self.n_classes = n_classes
|
||||
|
||||
assert len(self.in_shape) == 3, 'There need to be three Dimensions'
|
||||
channels, height, width = self.in_shape
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.embed_dim = self.params.embedding_size
|
||||
self.height = height
|
||||
self.channels = channels
|
||||
|
||||
self.new_width = ((width - self.params.patch_size)//1) + 1
|
||||
|
||||
num_patches = self.new_width - (self.params.patch_size // 2)
|
||||
patch_dim = channels * self.params.patch_size * self.height
|
||||
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
|
||||
f'attention. Try decreasing your patch size'
|
||||
|
||||
# Correct the Embedding Dim
|
||||
if not self.embed_dim % self.params.heads == 0:
|
||||
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
|
||||
message = ('Embedding Dimension was fixed to be devideable by the number' +
|
||||
f' of attention heads, is now: {self.embed_dim}')
|
||||
for func in print, warnings.warn:
|
||||
func(message)
|
||||
|
||||
# Utility Modules
|
||||
self.autopad = AutoPadToShape((self.height, self.new_width))
|
||||
self.dropout = nn.Dropout(self.params.dropout)
|
||||
self.slider = SlidingWindow((channels, *self.autopad.target_shape), (self.height, self.params.patch_size),
|
||||
keepdim=False)
|
||||
|
||||
# Modules with Parameters
|
||||
self.transformer = TransformerModule(in_shape=self.embed_dim, mlp_dim=self.params.lat_dim,
|
||||
heads=self.params.heads, depth=self.params.attn_depth,
|
||||
dropout=self.params.dropout, use_norm=self.params.use_norm,
|
||||
activation=self.params.activation
|
||||
)
|
||||
|
||||
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
|
||||
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
|
||||
else F_x(self.embed_dim)
|
||||
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
|
||||
self.to_cls_token = nn.Identity()
|
||||
|
||||
self.mlp_head = nn.Sequential(
|
||||
nn.LayerNorm(self.embed_dim),
|
||||
nn.Linear(self.embed_dim, self.params.lat_dim),
|
||||
nn.GELU(),
|
||||
nn.Dropout(self.params.dropout),
|
||||
nn.Linear(self.params.lat_dim, self.n_classes),
|
||||
nn.Softmax()
|
||||
)
|
||||
|
||||
def forward(self, x, mask=None, return_attn_weights=False):
|
||||
"""
|
||||
:param x: the sequence to the encoder (required).
|
||||
:param mask: the mask for the src sequence (optional).
|
||||
:param return_attn_weights: wether to return the attn weights (optional)
|
||||
:return:
|
||||
"""
|
||||
tensor = self.autopad(x)
|
||||
tensor = self.slider(tensor)
|
||||
|
||||
tensor = self.patch_to_embedding(tensor)
|
||||
b, n, _ = tensor.shape
|
||||
|
||||
cls_tokens = repeat(self.cls_token, '() n d -> b n d', b=b)
|
||||
|
||||
tensor = torch.cat((cls_tokens, tensor), dim=1)
|
||||
tensor += self.pos_embedding[:, :(n + 1)]
|
||||
tensor = self.dropout(tensor)
|
||||
|
||||
if return_attn_weights:
|
||||
tensor, attn_weights = self.transformer(tensor, mask, return_attn_weights)
|
||||
else:
|
||||
attn_weights = None
|
||||
tensor = self.transformer(tensor, mask)
|
||||
|
||||
tensor = self.to_cls_token(tensor[:, 0])
|
||||
tensor = self.mlp_head(tensor)
|
||||
return Namespace(main_out=tensor, attn_weights=attn_weights)
|
||||
|
||||
def additional_scores(self, outputs):
|
||||
return MultiClassScores(self)(outputs)
|
||||
Reference in New Issue
Block a user