Final Train Runs

This commit is contained in:
Steffen Illium
2021-03-18 07:45:07 +01:00
parent ad254dae92
commit fecf4923c2
14 changed files with 672 additions and 362 deletions

View File

@@ -21,9 +21,9 @@ class VisualTransformer(CombinedModelMixins,
):
def __init__(self, in_shape, n_classes, weight_init, activation,
embedding_size, heads, attn_depth, patch_size,use_residual,
use_bias, use_norm, dropout, lat_dim, loss,
lr, weight_decay, sto_weight_avg, lr_warm_restart_epochs, opt_reset_interval):
embedding_size, heads, attn_depth, patch_size, use_residual,
use_bias, use_norm, dropout, lat_dim, loss, scheduler, mlp_dim, head_dim,
lr, weight_decay, sto_weight_avg, lr_scheduler_parameter, opt_reset_interval):
# TODO: Move this to parent class, or make it much easieer to access... But How...
a = dict(locals())
@@ -53,26 +53,26 @@ class VisualTransformer(CombinedModelMixins,
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
#if not self.embed_dim % self.params.heads == 0:
# self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
# message = ('Embedding Dimension was fixed to be devideable by the number' +
# f' of attention heads, is now: {self.embed_dim}')
# for func in print, warnings.warn:
# func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.image_size, self.image_size))
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, mlp_dim=self.params.lat_dim,
self.transformer = TransformerModule(in_shape=self.embed_dim, mlp_dim=self.params.mlp_dim,
head_dim=self.params.head_dim,
heads=self.params.heads, depth=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation, use_residual=self.params.use_residual
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim) if self.params.embedding_size \
else F_x(self.embed_dim)
self.patch_to_embedding = nn.Linear(patch_dim, self.embed_dim)
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.dropout = nn.Dropout(self.params.dropout)
@@ -117,4 +117,4 @@ class VisualTransformer(CombinedModelMixins,
return Namespace(main_out=tensor, attn_weights=attn_weights)
def additional_scores(self, outputs):
return MultiClassScores(self)(outputs)
return MultiClassScores(self)(outputs)