CCS intergration dataloader

This commit is contained in:
Steffen 2021-03-19 17:17:16 +01:00
parent 6ace861016
commit d4059779c4
8 changed files with 213 additions and 35 deletions

View File

@ -0,0 +1,169 @@
import multiprocessing as mp
from collections import defaultdict
from pathlib import Path
from torch.utils.data import DataLoader, ConcatDataset, WeightedRandomSampler
from torchvision.transforms import Compose, RandomApply
from ml_lib.audio_toolset.audio_io import NormalizeLocal
from ml_lib.audio_toolset.audio_to_mel_dataset import LibrosaAudioToMelDataset
from ml_lib.audio_toolset.mel_augmentation import NoiseInjection, LoudnessManipulator, ShiftTime, MaskAug
from ml_lib.utils._basedatamodule import _BaseDataModule, DATA_OPTION_test, DATA_OPTION_train, DATA_OPTION_devel
from ml_lib.utils.equal_sampler import EqualSampler
from ml_lib.utils.transforms import ToTensor
data_options = [DATA_OPTION_test, DATA_OPTION_train, DATA_OPTION_devel]
class CCSLibrosaDatamodule(_BaseDataModule):
@property
def class_names(self):
return {key: val for val, key in enumerate(['negative', 'positive'])}
@property
def n_classes(self):
return len(self.class_names)
@property
def shape(self):
return self.datasets[DATA_OPTION_train].datasets[0][0][1].shape
@property
def mel_folder(self):
return self.root / 'mel_folder'
@property
def wav_folder(self):
return self.root / 'wav'
def __init__(self, data_root, batch_size, num_worker, sr, n_mels, n_fft, hop_length, sampler=None,
random_apply_chance=0.5, target_mel_length_in_seconds=1,
loudness_ratio=0.3, shift_ratio=0.3, noise_ratio=0.3, mask_ratio=0.3):
super(CCSLibrosaDatamodule, self).__init__()
self.sampler = sampler
self.samplers = None
self.num_worker = num_worker or 1
self.batch_size = batch_size
self.root = Path(data_root) / 'ComParE2021_CCS'
self.mel_length_in_seconds = target_mel_length_in_seconds
# Mel Transforms - will be pushed with all other paramters by self.__dict__ to subdataset-class
self.mel_kwargs = dict(sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
# Utility
self.utility_transforms = Compose([NormalizeLocal(), ToTensor()])
# Data Augmentations
self.random_apply_chance = random_apply_chance
self.mel_augmentations = Compose([
RandomApply([NoiseInjection(noise_ratio)], p=random_apply_chance),
RandomApply([LoudnessManipulator(loudness_ratio)], p=random_apply_chance),
RandomApply([ShiftTime(shift_ratio)], p=random_apply_chance),
RandomApply([MaskAug(mask_ratio)], p=random_apply_chance),
self.utility_transforms])
def train_dataloader(self):
return DataLoader(dataset=self.datasets[DATA_OPTION_train], num_workers=self.num_worker, pin_memory=True,
sampler=self.samplers[DATA_OPTION_train], batch_size=self.batch_size)
# Validation Dataloader
def val_dataloader(self):
return DataLoader(dataset=self.datasets[DATA_OPTION_devel], shuffle=False,
batch_size=self.batch_size, pin_memory=False,
num_workers=self.num_worker)
# Test Dataloader
def test_dataloader(self):
return DataLoader(dataset=self.datasets[DATA_OPTION_test], shuffle=False,
batch_size=self.batch_size, pin_memory=False,
num_workers=self.num_worker)
def _build_subdataset(self, row, build=False):
slice_file_name, class_name = row.strip().split(',')
class_id = self.class_names.get(class_name, -1)
audio_file_path = self.wav_folder / slice_file_name
# DATA OPTION DIFFERENTIATION !!!!!!!!!!! - Begin
kwargs = self.__dict__
if any([x in slice_file_name for x in [DATA_OPTION_devel, DATA_OPTION_test]]):
kwargs.update(mel_augmentations=self.utility_transforms)
# DATA OPTION DIFFERENTIATION !!!!!!!!!!! - End
target_frames = self.mel_length_in_seconds * self.mel_kwargs['sr']
sample_segment_length = target_frames // self.mel_kwargs['hop_length'] + 1
kwargs.update(sample_segment_len=sample_segment_length, sample_hop_len=sample_segment_length//2)
mel_dataset = LibrosaAudioToMelDataset(audio_file_path, class_id, **kwargs)
if build:
assert mel_dataset.build_mel()
return mel_dataset, class_id, slice_file_name
def prepare_data(self, *args, **kwargs):
datasets = dict()
for data_option in data_options:
with open(Path(self.root) / 'lab' / f'{data_option}.csv', mode='r') as f:
# Exclude the header
_ = next(f)
all_rows = list(f)
chunksize = len(all_rows) // max(self.num_worker, 1)
dataset = list()
with mp.Pool(processes=self.num_worker) as pool:
from itertools import repeat
results = pool.starmap_async(self._build_subdataset, zip(all_rows, repeat(True, len(all_rows))),
chunksize=chunksize)
for sub_dataset in results.get():
dataset.append(sub_dataset[0])
datasets[data_option] = ConcatDataset(dataset)
self.datasets = datasets
return datasets
def setup(self, stag=None):
datasets = dict()
samplers = dict()
weights = dict()
for data_option in data_options:
with open(Path(self.root) / 'lab' / f'{data_option}.csv', mode='r') as f:
# Exclude the header
_ = next(f)
all_rows = list(f)
dataset = list()
for row in all_rows:
mel_dataset, class_id, _ = self._build_subdataset(row)
dataset.append(mel_dataset)
datasets[data_option] = ConcatDataset(dataset)
# Build Weighted Sampler for train and val
if data_option in [DATA_OPTION_train]:
if self.sampler == EqualSampler.__name__:
class_idxs = [[idx for idx, (_, __, label) in enumerate(datasets[data_option]) if label == class_idx]
for class_idx in range(len(self.class_names))
]
samplers[data_option] = EqualSampler(class_idxs)
elif self.sampler == WeightedRandomSampler.__name__:
class_counts = defaultdict(lambda: 0)
for _, __, label in datasets[data_option]:
class_counts[label] += 1
len_largest_class = max(class_counts.values())
weights[data_option] = [1 / class_counts[x] for x in range(len(class_counts))]
##############################################################################
weights[data_option] = [weights[data_option][datasets[data_option][i][-1]]
for i in range(len(datasets[data_option]))]
samplers[data_option] = WeightedRandomSampler(weights[data_option],
len_largest_class * len(self.class_names))
else:
samplers[data_option] = None
self.datasets = datasets
self.samplers = samplers
return datasets
def purge(self):
import shutil
shutil.rmtree(self.mel_folder, ignore_errors=True)
print('Mel Folder has been recursively deleted')
print(f'Folder still exists: {self.mel_folder.exists()}')
return not self.mel_folder.exists()

View File

@ -17,7 +17,13 @@ data_options = [DATA_OPTION_test, DATA_OPTION_train, DATA_OPTION_devel]
class PrimatesLibrosaDatamodule(_BaseDataModule): class PrimatesLibrosaDatamodule(_BaseDataModule):
class_names = {key: val for val, key in enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])} @property
def class_names(self):
return {key: val for val, key in enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])}
@property
def n_classes(self):
return len(self.class_names)
@property @property
def shape(self): def shape(self):
@ -33,19 +39,16 @@ class PrimatesLibrosaDatamodule(_BaseDataModule):
return self.root / 'wav' return self.root / 'wav'
def __init__(self, data_root, batch_size, num_worker, sr, n_mels, n_fft, hop_length, sampler=None, def __init__(self, data_root, batch_size, num_worker, sr, n_mels, n_fft, hop_length, sampler=None,
sample_segment_len=40, sample_hop_len=15, random_apply_chance=0.5, target_mel_length_in_seconds=0.7, random_apply_chance=0.5,
loudness_ratio=0.3, shift_ratio=0.3, noise_ratio=0.3, mask_ratio=0.3): loudness_ratio=0.3, shift_ratio=0.3, noise_ratio=0.3, mask_ratio=0.3):
super(PrimatesLibrosaDatamodule, self).__init__() super(PrimatesLibrosaDatamodule, self).__init__()
self.sampler = sampler self.sampler = sampler
self.samplers = None self.samplers = None
self.sample_hop_len = sample_hop_len
self.sample_segment_len = sample_segment_len
self.num_worker = num_worker or 1 self.num_worker = num_worker or 1
self.batch_size = batch_size self.batch_size = batch_size
self.root = Path(data_root) / 'primates' self.root = Path(data_root) / 'primates'
self.mel_length_in_seconds = 0.7 self.target_mel_length_in_seconds = target_mel_length_in_seconds
# Mel Transforms - will be pushed with all other paramters by self.__dict__ to subdataset-class # Mel Transforms - will be pushed with all other paramters by self.__dict__ to subdataset-class
self.mel_kwargs = dict(sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length) self.mel_kwargs = dict(sr=sr, n_mels=n_mels, n_fft=n_fft, hop_length=hop_length)
@ -89,7 +92,7 @@ class PrimatesLibrosaDatamodule(_BaseDataModule):
kwargs.update(mel_augmentations=self.utility_transforms) kwargs.update(mel_augmentations=self.utility_transforms)
# DATA OPTION DIFFERENTIATION !!!!!!!!!!! - End # DATA OPTION DIFFERENTIATION !!!!!!!!!!! - End
target_frames = self.mel_length_in_seconds * self.mel_kwargs['sr'] target_frames = self.target_mel_length_in_seconds * self.mel_kwargs['sr']
sample_segment_length = target_frames // self.mel_kwargs['hop_length'] + 1 sample_segment_length = target_frames // self.mel_kwargs['hop_length'] + 1
kwargs.update(sample_segment_len=sample_segment_length, sample_hop_len=sample_segment_length//2) kwargs.update(sample_segment_len=sample_segment_length, sample_hop_len=sample_segment_length//2)
mel_dataset = LibrosaAudioToMelDataset(audio_file_path, class_id, **kwargs) mel_dataset = LibrosaAudioToMelDataset(audio_file_path, class_id, **kwargs)

View File

@ -60,7 +60,7 @@ def run_lightning_loop(h_params, data_class, model_class, seed=69, additional_ca
trainer = Trainer.from_argparse_args(h_params, logger=logger, callbacks=callbacks) trainer = Trainer.from_argparse_args(h_params, logger=logger, callbacks=callbacks)
# Let Model pull what it wants # Let Model pull what it wants
model = model_class.from_argparse_args(h_params, in_shape=datamodule.shape, n_classes=v.N_CLASS_multi) model = model_class.from_argparse_args(h_params, in_shape=datamodule.shape, n_classes=datamodule.n_classes)
model.init_weights() model.init_weights()
# trainer.test(model=model, datamodule=datamodule) # trainer.test(model=model, datamodule=datamodule)

View File

@ -10,7 +10,7 @@ from einops import rearrange, repeat
from ml_lib.metrics.multi_class_classification import MultiClassScores from ml_lib.metrics.multi_class_classification import MultiClassScores
from ml_lib.modules.blocks import TransformerModule from ml_lib.modules.blocks import TransformerModule
from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape, F_x) from ml_lib.modules.util import (LightningBaseModule, AutoPadToShape)
from util.module_mixins import CombinedModelMixins from util.module_mixins import CombinedModelMixins
MIN_NUM_PATCHES = 16 MIN_NUM_PATCHES = 16
@ -25,7 +25,7 @@ class VisualTransformer(CombinedModelMixins,
use_bias, use_norm, dropout, lat_dim, loss, scheduler, mlp_dim, head_dim, use_bias, use_norm, dropout, lat_dim, loss, scheduler, mlp_dim, head_dim,
lr, weight_decay, sto_weight_avg, lr_scheduler_parameter, opt_reset_interval): lr, weight_decay, sto_weight_avg, lr_scheduler_parameter, opt_reset_interval):
# TODO: Move this to parent class, or make it much easieer to access... But How... # TODO: Move this to parent class, or make it much easier to access... But How...
a = dict(locals()) a = dict(locals())
params = {arg: a[arg] for arg in inspect.signature(self.__init__).parameters.keys() if arg != 'self'} params = {arg: a[arg] for arg in inspect.signature(self.__init__).parameters.keys() if arg != 'self'}
super(VisualTransformer, self).__init__(params) super(VisualTransformer, self).__init__(params)
@ -75,7 +75,7 @@ class VisualTransformer(CombinedModelMixins,
nn.Linear(self.embed_dim, self.params.lat_dim), nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(), nn.GELU(),
nn.Dropout(self.params.dropout), nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, n_classes), nn.Linear(self.params.lat_dim, self.params.n_classes),
nn.Softmax() nn.Softmax()
) )
@ -88,7 +88,7 @@ class VisualTransformer(CombinedModelMixins,
tensor = self.autopad(x) tensor = self.autopad(x)
p = self.params.patch_size p = self.params.patch_size
tensor = rearrange(tensor, 'b c (h p1) (w p2) -> b (w h) (p1 p2 c)', p1=p, p2=p) tensor = rearrange(tensor, 'b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1=p, p2=p)
b, n, _ = tensor.shape b, n, _ = tensor.shape
# mask # mask
@ -96,7 +96,7 @@ class VisualTransformer(CombinedModelMixins,
mask = (lengths == torch.zeros_like(lengths)) mask = (lengths == torch.zeros_like(lengths))
# CLS-token awareness # CLS-token awareness
# mask = torch.cat((torch.zeros(b, 1), mask), dim=-1) # mask = torch.cat((torch.zeros(b, 1), mask), dim=-1)
# mask = repeat(mask, 'b n -> b n', h=self.params.heads) # mask = repeat(mask, 'b n -> b h n', h=self.params.heads)
tensor = self.patch_to_embedding(tensor) tensor = self.patch_to_embedding(tensor)

View File

@ -10,26 +10,27 @@ import itertools
if __name__ == '__main__': if __name__ == '__main__':
# Set new values # Set new values
hparams_dict = dict(seed=range(10), hparams_dict = dict(seed=[69],
model_name=['VisualTransformer'], model_name=['VisualTransformer'],
batch_size=[50], data_name=['CCSLibrosaDatamodule'],
max_epochs=[250], batch_size=[5],
random_apply_chance=[0.3], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1), max_epochs=[200],
loudness_ratio=[0], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1), random_apply_chance=[0.5], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1),
loudness_ratio=[0.3], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1),
shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1), shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1),
noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1), noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1),
mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1), mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1),
lr=[5e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3), lr=[1e-2], # trial.suggest_uniform('lr', 1e-3, 3e-3),
dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05), dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05),
lat_dim=[32], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1), lat_dim=[48], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1),
mlp_dim=[16], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1), mlp_dim=[30], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1),
head_dim=[6], # 2 ** trial.suggest_int('head_dim', 1, 5, step=1), head_dim=[12], # 2 ** trial.suggest_int('head_dim', 1, 5, step=1),
patch_size=[12], # trial.suggest_int('patch_size', 6, 12, step=3), patch_size=[12], # trial.suggest_int('patch_size', 6, 12, step=3),
attn_depth=[10], # trial.suggest_int('attn_depth', 2, 14, step=4), attn_depth=[12], # trial.suggest_int('attn_depth', 2, 14, step=4),
heads=[6], # trial.suggest_int('heads', 2, 16, step=2), heads=[12], # trial.suggest_int('heads', 2, 16, step=2),
scheduler=['CosineAnnealingWarmRestarts'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']), scheduler=['LambdaLR'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']),
lr_scheduler_parameter=[25], # [0.98], lr_scheduler_parameter=[0.95], # [0.98],
embedding_size=[30], # trial.suggest_int('embedding_size', 12, 64, step=12), embedding_size=[64], # trial.suggest_int('embedding_size', 12, 64, step=12),
loss=['ce_loss'], loss=['ce_loss'],
sampler=['WeightedRandomSampler'], sampler=['WeightedRandomSampler'],
# rial.suggest_categorical('sampler', [None, 'WeightedRandomSampler']), # rial.suggest_categorical('sampler', [None, 'WeightedRandomSampler']),
@ -40,7 +41,7 @@ if __name__ == '__main__':
permutations_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)] permutations_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)]
for permutations_dict in tqdm(permutations_dicts, total=len(permutations_dicts)): for permutations_dict in tqdm(permutations_dicts, total=len(permutations_dicts)):
# Parse comandline args, read config and get model # Parse comandline args, read config and get model
cmd_args, found_data_class, found_model_class = parse_comandline_args_add_defaults( cmd_args, *data_model_seed = parse_comandline_args_add_defaults(
'_parameters.ini', overrides=permutations_dict) '_parameters.ini', overrides=permutations_dict)
hparams = dict(**cmd_args) hparams = dict(**cmd_args)
@ -50,6 +51,6 @@ if __name__ == '__main__':
# RUN # RUN
# --------------------------------------- # ---------------------------------------
print(f'Running Loop, parameters are: {permutations_dict}') print(f'Running Loop, parameters are: {permutations_dict}')
run_lightning_loop(hparams, found_data_class, found_model_class) run_lightning_loop(hparams, *data_model_seed)
print(f'Done, parameters were: {permutations_dict}') print(f'Done, parameters were: {permutations_dict}')
pass pass

View File

@ -22,7 +22,7 @@ def rebuild_dataset(h_params, data_class):
if __name__ == '__main__': if __name__ == '__main__':
# Parse comandline args, read config and get model # Parse comandline args, read config and get model
cmd_args, found_data_class, _ = parse_comandline_args_add_defaults('_parameters.ini') cmd_args, found_data_class, _, _ = parse_comandline_args_add_defaults('_parameters.ini')
# To NameSpace # To NameSpace
hparams = Namespace(**cmd_args) hparams = Namespace(**cmd_args)

View File

@ -19,7 +19,7 @@ class TrainMixin:
y = self(batch_x).main_out y = self(batch_x).main_out
if self.params.loss == 'focal_loss_rob': if self.params.loss == 'focal_loss_rob':
labels_one_hot = torch.nn.functional.one_hot(batch_y, num_classes=5) labels_one_hot = torch.nn.functional.one_hot(batch_y, num_classes=self.params.n_classes)
loss = self.__getattribute__(self.params.loss)(y, labels_one_hot) loss = self.__getattribute__(self.params.loss)(y, labels_one_hot)
else: else:
loss = self.__getattribute__(self.params.loss)(y, batch_y.long()) loss = self.__getattribute__(self.params.loss)(y, batch_y.long())
@ -58,7 +58,7 @@ class ValMixin:
y_max = torch.stack( y_max = torch.stack(
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()] [torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
).squeeze() ).squeeze()
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=5).float() y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=self.params.n_classes).float()
self.metrics.update(y_one_hot, torch.stack(tuple(sorted_batch_y.values())).long()) self.metrics.update(y_one_hot, torch.stack(tuple(sorted_batch_y.values())).long())
val_loss = self.ce_loss(y, batch_y.long()) val_loss = self.ce_loss(y, batch_y.long())
@ -96,7 +96,7 @@ class ValMixin:
y_max = torch.stack( y_max = torch.stack(
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()] [torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
).squeeze() ).squeeze()
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=5).float() y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=self.params.n_classes).float()
max_vote_loss = self.ce_loss(y_one_hot, sorted_batch_y) max_vote_loss = self.ce_loss(y_one_hot, sorted_batch_y)
summary_dict.update(val_max_vote_loss=max_vote_loss) summary_dict.update(val_max_vote_loss=max_vote_loss)
@ -145,7 +145,11 @@ class TestMixin:
y_max = torch.stack( y_max = torch.stack(
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()] [torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
).squeeze().cpu() ).squeeze().cpu()
class_names = {val: key for val, key in enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])} if self.params.n_classes == 5:
class_names = {val: key for val, key in
enumerate(['background', 'chimpanze', 'geunon', 'mandrille', 'redcap'])}
elif self.params.n_classes == 2:
class_names = {val: key for val, key in ['negative', 'positive']}
df = pd.DataFrame(data=dict(filename=[Path(x).name for x in sorted_y.keys()], df = pd.DataFrame(data=dict(filename=[Path(x).name for x in sorted_y.keys()],
prediction=y_max.cpu().numpy())) prediction=y_max.cpu().numpy()))
@ -154,7 +158,7 @@ class TestMixin:
try: try:
result_file.unlink() result_file.unlink()
except: except:
print('File allready existed') print('File already existed')
pass pass
with result_file.open(mode='wb') as csv_file: with result_file.open(mode='wb') as csv_file:
df.to_csv(index=False, path_or_buf=csv_file) df.to_csv(index=False, path_or_buf=csv_file)

View File

@ -4,5 +4,6 @@ from pathlib import Path
sr = 16000 sr = 16000
PRIMATES_Root = Path(__file__).parent / 'data' / 'primates' PRIMATES_Root = Path(__file__).parent / 'data' / 'primates'
CCS_Root = Path(__file__).parent / 'data' / 'ComParE2021_CCS'
N_CLASS_multi = 5 N_CLASS_multi = 5