paper preperations and notebooks, optuna callbacks

This commit is contained in:
Steffen Illium
2021-04-02 08:45:11 +02:00
parent 7c88602776
commit cec3a07d60
21 changed files with 3818 additions and 1059 deletions

View File

@@ -18,9 +18,10 @@ MIN_NUM_PATCHES = 16
class VerticalVisualTransformer(CombinedModelMixins, LightningBaseModule):
def __init__(self, in_shape, n_classes, weight_init, activation,
embedding_size, heads, attn_depth, patch_size, use_residual,
use_bias, use_norm, dropout, lat_dim, features, loss, scheduler,
lr, weight_decay, sto_weight_avg, lr_warm_restart_epochs, opt_reset_interval):
embedding_size, heads, attn_depth, patch_size, use_residual, variable_length,
use_bias, use_norm, dropout, lat_dim, loss, scheduler, mlp_dim, head_dim,
lr, weight_decay, sto_weight_avg, lr_scheduler_parameter, opt_reset_interval,
return_logits=False):
# TODO: Move this to parent class, or make it much easieer to access... But How...
a = dict(locals())
@@ -47,14 +48,6 @@ class VerticalVisualTransformer(CombinedModelMixins, LightningBaseModule):
assert num_patches >= MIN_NUM_PATCHES, f'your number of patches ({num_patches}) is way too small for ' + \
f'attention. Try decreasing your patch size'
# Correct the Embedding Dim
if not self.embed_dim % self.params.heads == 0:
self.embed_dim = (self.embed_dim // self.params.heads) * self.params.heads
message = ('Embedding Dimension was fixed to be devideable by the number' +
f' of attention heads, is now: {self.embed_dim}')
for func in print, warnings.warn:
func(message)
# Utility Modules
self.autopad = AutoPadToShape((self.height, self.new_width))
self.dropout = nn.Dropout(self.params.dropout)
@@ -62,10 +55,11 @@ class VerticalVisualTransformer(CombinedModelMixins, LightningBaseModule):
keepdim=False)
# Modules with Parameters
self.transformer = TransformerModule(in_shape=self.embed_dim, mlp_dim=self.params.lat_dim,
self.transformer = TransformerModule(in_shape=self.embed_dim, mlp_dim=self.params.mlp_dim,
head_dim=self.params.head_dim,
heads=self.params.heads, depth=self.params.attn_depth,
dropout=self.params.dropout, use_norm=self.params.use_norm,
activation=self.params.activation
activation=self.params.activation, use_residual=self.params.use_residual
)
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, self.embed_dim))
@@ -74,13 +68,17 @@ class VerticalVisualTransformer(CombinedModelMixins, LightningBaseModule):
self.cls_token = nn.Parameter(torch.randn(1, 1, self.embed_dim))
self.to_cls_token = nn.Identity()
logits = self.params.n_classes if self.params.n_classes > 2 else 1
outbound_activation = nn.Softmax if logits > 1 else nn.Sigmoid
self.mlp_head = nn.Sequential(
nn.LayerNorm(self.embed_dim),
nn.Linear(self.embed_dim, self.params.lat_dim),
nn.GELU(),
self.params.activation(),
nn.Dropout(self.params.dropout),
nn.Linear(self.params.lat_dim, self.n_classes),
nn.Softmax()
nn.Linear(self.params.lat_dim, logits),
outbound_activation()
)
def forward(self, x, mask=None, return_attn_weights=False):
@@ -112,5 +110,3 @@ class VerticalVisualTransformer(CombinedModelMixins, LightningBaseModule):
tensor = self.mlp_head(tensor)
return Namespace(main_out=tensor, attn_weights=attn_weights)
def additional_scores(self, outputs):
return MultiClassScores(self)(outputs)