paper preperations and notebooks, optuna callbacks
This commit is contained in:
69
models/bandwise_conv_classifier.py
Normal file
69
models/bandwise_conv_classifier.py
Normal file
@@ -0,0 +1,69 @@
|
||||
import inspect
|
||||
from argparse import Namespace
|
||||
|
||||
from torch import nn
|
||||
from torch.nn import ModuleList
|
||||
|
||||
from ml_lib.modules.blocks import ConvModule, LinearModule
|
||||
from ml_lib.modules.util import (LightningBaseModule, Splitter, Merger)
|
||||
from util.module_mixins import CombinedModelMixins
|
||||
|
||||
|
||||
class BandwiseConvClassifier(CombinedModelMixins,
|
||||
LightningBaseModule
|
||||
):
|
||||
def __init__(self, in_shape, n_classes, weight_init, activation,
|
||||
use_bias, use_norm, dropout, lat_dim, filters,
|
||||
lr, weight_decay, sto_weight_avg, lr_warm_restart_epochs, opt_reset_interval,
|
||||
loss, scheduler, lr_scheduler_parameter
|
||||
):
|
||||
# TODO: Move this to parent class, or make it much easieer to access....
|
||||
a = dict(locals())
|
||||
params = {arg: a[arg] for arg in inspect.signature(self.__init__).parameters.keys() if arg != 'self'}
|
||||
super(BandwiseConvClassifier, self).__init__(params)
|
||||
|
||||
# Model Paramters
|
||||
# =============================================================================
|
||||
# Additional parameters
|
||||
self.n_band_sections = 8
|
||||
|
||||
# Modules
|
||||
# =============================================================================
|
||||
self.split = Splitter(in_shape, self.n_band_sections)
|
||||
|
||||
k = 3
|
||||
self.band_list = ModuleList()
|
||||
for band in range(self.n_band_sections):
|
||||
last_shape = self.split.shape[band]
|
||||
conv_list = ModuleList()
|
||||
for conv_filters in self.params.filters:
|
||||
conv_list.append(ConvModule(last_shape, conv_filters, (k, k), conv_stride=(2, 2), conv_padding=2,
|
||||
**self.params.module_kwargs))
|
||||
last_shape = conv_list[-1].shape
|
||||
# self.conv_list.append(ConvModule(last_shape, 1, 1, conv_stride=1, **self.params.module_kwargs))
|
||||
# last_shape = self.conv_list[-1].shape
|
||||
self.band_list.append(conv_list)
|
||||
|
||||
self.merge = Merger(self.band_list[-1][-1].shape, self.n_band_sections)
|
||||
|
||||
self.full_1 = LinearModule(self.merge.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
self.full_2 = LinearModule(self.full_1.shape, self.params.lat_dim, **self.params.module_kwargs)
|
||||
|
||||
# Make Decision between binary and Multiclass Classification
|
||||
logits = n_classes if n_classes > 2 else 1
|
||||
module_kwargs = self.params.module_kwargs
|
||||
module_kwargs.update(activation=(nn.Softmax if logits > 1 else nn.Sigmoid))
|
||||
self.full_out = LinearModule(self.full_2.shape, logits, **module_kwargs)
|
||||
|
||||
def forward(self, batch, **kwargs):
|
||||
tensors = self.split(batch)
|
||||
for idx, (tensor, convs) in enumerate(zip(tensors, self.band_list)):
|
||||
for conv in convs:
|
||||
tensor = conv(tensor)
|
||||
tensors[idx] = tensor
|
||||
|
||||
tensor = self.merge(tensors)
|
||||
tensor = self.full_1(tensor)
|
||||
tensor = self.full_2(tensor)
|
||||
tensor = self.full_out(tensor)
|
||||
return Namespace(main_out=tensor)
|
||||
Reference in New Issue
Block a user