CCS intergration dataloader
This commit is contained in:
parent
d30edbda6e
commit
78b3139d1a
25
multi_run.py
25
multi_run.py
@ -10,27 +10,30 @@ import itertools
|
|||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
# Set new values
|
# Set new values
|
||||||
hparams_dict = dict(seed=[69],
|
hparams_dict = dict(seed=range(10),
|
||||||
model_name=['VisualTransformer'],
|
model_name=['VisualTransformer'],
|
||||||
data_name=['CCSLibrosaDatamodule'],
|
data_name=['CCSLibrosaDatamodule'],
|
||||||
batch_size=[5],
|
batch_size=[50],
|
||||||
max_epochs=[200],
|
max_epochs=[200],
|
||||||
|
variable_length=[False],
|
||||||
|
sample_segment_len=[40],
|
||||||
|
sample_hop_len=[15],
|
||||||
random_apply_chance=[0.5], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1),
|
random_apply_chance=[0.5], # trial.suggest_float('random_apply_chance', 0.1, 0.5, step=0.1),
|
||||||
loudness_ratio=[0.3], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1),
|
loudness_ratio=[0], # trial.suggest_float('loudness_ratio', 0.0, 0.5, step=0.1),
|
||||||
shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1),
|
shift_ratio=[0.3], # trial.suggest_float('shift_ratio', 0.0, 0.5, step=0.1),
|
||||||
noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1),
|
noise_ratio=[0.3], # trial.suggest_float('noise_ratio', 0.0, 0.5, step=0.1),
|
||||||
mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1),
|
mask_ratio=[0.3], # trial.suggest_float('mask_ratio', 0.0, 0.5, step=0.1),
|
||||||
lr=[1e-2], # trial.suggest_uniform('lr', 1e-3, 3e-3),
|
lr=[1e-3], # trial.suggest_uniform('lr', 1e-3, 3e-3),
|
||||||
dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05),
|
dropout=[0.2], # trial.suggest_float('dropout', 0.0, 0.3, step=0.05),
|
||||||
lat_dim=[48], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1),
|
lat_dim=[32], # 2 ** trial.suggest_int('lat_dim', 1, 5, step=1),
|
||||||
mlp_dim=[30], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1),
|
mlp_dim=[16], # 2 ** trial.suggest_int('mlp_dim', 1, 5, step=1),
|
||||||
head_dim=[12], # 2 ** trial.suggest_int('head_dim', 1, 5, step=1),
|
head_dim=[6], # 2 ** trial.suggest_int('head_dim', 1, 5, step=1),
|
||||||
patch_size=[12], # trial.suggest_int('patch_size', 6, 12, step=3),
|
patch_size=[12], # trial.suggest_int('patch_size', 6, 12, step=3),
|
||||||
attn_depth=[12], # trial.suggest_int('attn_depth', 2, 14, step=4),
|
attn_depth=[12], # trial.suggest_int('attn_depth', 2, 14, step=4),
|
||||||
heads=[12], # trial.suggest_int('heads', 2, 16, step=2),
|
heads=[6], # trial.suggest_int('heads', 2, 16, step=2),
|
||||||
scheduler=['LambdaLR'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']),
|
scheduler=['LambdaLR'], # trial.suggest_categorical('scheduler', [None, 'LambdaLR']),
|
||||||
lr_scheduler_parameter=[0.95], # [0.98],
|
lr_scheduler_parameter=[0.95], # [0.98],
|
||||||
embedding_size=[64], # trial.suggest_int('embedding_size', 12, 64, step=12),
|
embedding_size=[30], # trial.suggest_int('embedding_size', 12, 64, step=12),
|
||||||
loss=['ce_loss'],
|
loss=['ce_loss'],
|
||||||
sampler=['WeightedRandomSampler'],
|
sampler=['WeightedRandomSampler'],
|
||||||
# rial.suggest_categorical('sampler', [None, 'WeightedRandomSampler']),
|
# rial.suggest_categorical('sampler', [None, 'WeightedRandomSampler']),
|
||||||
@ -41,7 +44,7 @@ if __name__ == '__main__':
|
|||||||
permutations_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)]
|
permutations_dicts = [dict(zip(keys, v)) for v in itertools.product(*values)]
|
||||||
for permutations_dict in tqdm(permutations_dicts, total=len(permutations_dicts)):
|
for permutations_dict in tqdm(permutations_dicts, total=len(permutations_dicts)):
|
||||||
# Parse comandline args, read config and get model
|
# Parse comandline args, read config and get model
|
||||||
cmd_args, *data_model_seed = parse_comandline_args_add_defaults(
|
cmd_args, found_data_class, found_model_class, found_seed = parse_comandline_args_add_defaults(
|
||||||
'_parameters.ini', overrides=permutations_dict)
|
'_parameters.ini', overrides=permutations_dict)
|
||||||
|
|
||||||
hparams = dict(**cmd_args)
|
hparams = dict(**cmd_args)
|
||||||
@ -51,6 +54,6 @@ if __name__ == '__main__':
|
|||||||
# RUN
|
# RUN
|
||||||
# ---------------------------------------
|
# ---------------------------------------
|
||||||
print(f'Running Loop, parameters are: {permutations_dict}')
|
print(f'Running Loop, parameters are: {permutations_dict}')
|
||||||
run_lightning_loop(hparams, *data_model_seed)
|
run_lightning_loop(hparams, found_data_class, found_model_class, seed=found_seed)
|
||||||
print(f'Done, parameters were: {permutations_dict}')
|
print(f'Done, parameters were: {permutations_dict}')
|
||||||
pass
|
pass
|
||||||
|
@ -59,7 +59,13 @@ class ValMixin:
|
|||||||
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
[torch.argmax(x.mean(dim=0)) if x.shape[0] > 1 else torch.argmax(x) for x in sorted_y.values()]
|
||||||
).squeeze()
|
).squeeze()
|
||||||
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=self.params.n_classes).float()
|
y_one_hot = torch.nn.functional.one_hot(y_max, num_classes=self.params.n_classes).float()
|
||||||
self.metrics.update(y_one_hot, torch.stack(tuple(sorted_batch_y.values())).long())
|
target_y = torch.stack(tuple(sorted_batch_y.values())).long()
|
||||||
|
if y_one_hot.ndim == 1:
|
||||||
|
y_one_hot = y_one_hot.unsqueeze(0)
|
||||||
|
if target_y.ndim == 1:
|
||||||
|
target_y = target_y.unsqueeze(0)
|
||||||
|
|
||||||
|
self.metrics.update(y_one_hot, target_y)
|
||||||
|
|
||||||
val_loss = self.ce_loss(y, batch_y.long())
|
val_loss = self.ce_loss(y, batch_y.long())
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user