2019-08-07 08:54:07 +02:00

155 lines
4.3 KiB
Python

import numpy as np
import open3d as o3d
from sklearn.cluster import DBSCAN
def mini_color_table(index, norm=True):
colors = [
[0.5000, 0.5400, 0.5300], [0.8900, 0.1500, 0.2100], [0.6400, 0.5800, 0.5000],
[1.0000, 0.3800, 0.0100], [1.0000, 0.6600, 0.1400], [0.4980, 1.0000, 0.0000],
[0.4980, 1.0000, 0.8314], [0.9412, 0.9725, 1.0000], [0.5412, 0.1686, 0.8863],
[0.5765, 0.4392, 0.8588], [0.3600, 0.1400, 0.4300], [0.5600, 0.3700, 0.6000],
]
color = colors[index % len(colors)]
if not norm:
color[0] *= 255
color[1] *= 255
color[2] *= 255
return color
def clusterToColor(cluster, cluster_idx):
colors = np.zeros(shape=(len(cluster), 3))
point_idx = 0
for point in cluster:
colors[point_idx, :] = mini_color_table(cluster_idx)
point_idx += 1
return colors
def read_pointcloud(path, delimiter=' ', hasHeader=True):
with open(path, 'r') as f:
if hasHeader:
# Get rid of the Header
_ = f.readline()
# This itrates over all lines, splits them anc converts values to floats. Will fail on wrong values.
pc = [[float(x) for x in line.rstrip().split(delimiter)] for line in f if line != '']
return np.asarray(pc)
def write_pointcloud(file, pc, numCols=6):
np.savetxt(file, pc[:,:numCols], header=str(len(pc)) + ' ' + str(numCols), comments='')
def farthest_point_sampling(pts, K):
if pts.shape[0] < K:
return pts
def calc_distances(p0, points):
return ((p0[:3] - points[:, :3]) ** 2).sum(axis=1)
farthest_pts = np.zeros((K, pts.shape[1]))
farthest_pts[0] = pts[np.random.randint(len(pts))]
distances = calc_distances(farthest_pts[0], pts)
for i in range(1, K):
farthest_pts[i] = pts[np.argmax(distances)]
distances = np.minimum(distances, calc_distances(farthest_pts[i], pts))
return farthest_pts
def cluster_per_column(pc, column):
clusters = []
for i in range(0, int(np.max(pc[:, column]))):
cluster_pc = pc[pc[:, column] == i, :]
clusters.append(cluster_pc)
return clusters
def cluster_cubes(data, cluster_dims):
max = data[:,:3].max(axis=0)
max += max * 0.01
min = data[:,:3].min(axis=0)
min -= min * 0.01
size = (max - min)
clusters = {}
cluster_size = size / np.array(cluster_dims, dtype=np.float32)
print('Min: ' + str(min) + ' Max: ' + str(max))
print('Cluster Size: ' + str(cluster_size))
for row in data:
# print('Row: ' + str(row))
cluster_pos = ((row[:3] - min) / cluster_size).astype(int)
cluster_idx = cluster_dims[0] * cluster_dims[2] * cluster_pos[1] + cluster_dims[0] * cluster_pos[2] + cluster_pos[0]
clusters.setdefault(cluster_idx, []).append(row)
# Apply farthest point sampling to each cluster
for key, cluster in clusters.items():
c = np.vstack(cluster)
clusters[key] = c # farthest_point_sampling(c, max_points_per_cluster)
return clusters.values()
def cluster_dbscan(data, selected_indices, eps, min_samples, metric='euclidean', algo='auto'):
min_samples = min_samples * len(data)
print('Clustering. Min Samples: ' + str(min_samples) + ' EPS: ' + str(eps) + "Selected Indices: " + str(selected_indices))
# 0,1,2 : pos
# 3,4,5 : normal
# 6: type index
# 7,8,9,10: type index one hot encoded
# 11,12: normal as angles
db_res = DBSCAN(eps=eps, metric=metric, n_jobs=-1, algorithm=algo, min_samples=min_samples).fit(data[:, selected_indices])
labels = db_res.labels_
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
n_noise = list(labels).count(-1)
print("Noise: " + str(n_noise) + " Clusters: " + str(n_clusters))
clusters = {}
for idx, l in enumerate(labels):
if l is -1:
continue
clusters.setdefault(str(l), []).append(data[idx, :])
npClusters = []
for cluster in clusters.values():
npClusters.append(np.array(cluster))
return npClusters
def draw_clusters(clusters):
clouds = []
for cluster_idx, cluster in enumerate(clusters):
cloud = o3d.PointCloud()
cloud.points = o3d.Vector3dVector(cluster[:,:3])
cloud.colors = o3d.Vector3dVector(clusterToColor(cluster, cluster_idx))
clouds.append(cloud)
o3d.draw_geometries(clouds)