import numpy as np from collections import defaultdict import os from tqdm import tqdm import glob import torch from torch_geometric.data import InMemoryDataset from torch_geometric.data import Data from torch.utils.data import Dataset class CustomShapeNet(InMemoryDataset): categories = {key: val for val, key in enumerate(['Box', 'Cone', 'Cylinder', 'Sphere'])} def __init__(self, root, collate_per_segment=True, train=True, transform=None, pre_filter=None, pre_transform=None, headers=True, **kwargs): self.has_headers = headers self.collate_per_element = collate_per_segment self.train = train super(CustomShapeNet, self).__init__(root, transform, pre_transform, pre_filter) path = self.processed_paths[0] if train else self.processed_paths[-1] self.data, self.slices = torch.load(path) print("Initialized") @property def raw_file_names(self): # Maybe add more data like validation sets return ['train', 'test'] @property def processed_file_names(self): return [f'{x}.pt' for x in self.raw_file_names] def download(self): dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))]) print(f'{dir_count} folders have been found....') if dir_count: return dir_count raise IOError("No raw pointclouds have been found.") @property def num_classes(self): return len(self.categories) def _load_dataset(self): data, slices = None, None while True: try: filepath = os.path.join(self.root, self.processed_dir, f'{"train" if self.train else "test"}.pt') data, slices = torch.load(filepath) print('Dataset Loaded') break except FileNotFoundError: self.process() continue return data, slices def _transform_and_filter(self, data): # ToDo: ANy filter to apply? Then do it here. if self.pre_filter is not None and not self.pre_filter(data): data = self.pre_filter(data) raise NotImplementedError # ToDo: ANy transformation to apply? Then do it here. if self.pre_transform is not None: data = self.pre_transform(data) raise NotImplementedError return data def process(self, delimiter=' '): datasets = defaultdict(list) idx, data_folder = (0, self.raw_file_names[0]) if self.train else (1, self.raw_file_names[1]) path_to_clouds = os.path.join(self.raw_dir, data_folder) if '.headers' in os.listdir(path_to_clouds): self.has_headers = True elif 'no.headers' in os.listdir(path_to_clouds): self.has_headers = False else: pass for pointcloud in tqdm(os.scandir(path_to_clouds)): if not os.path.isdir(pointcloud): continue data, paths = None, list() for ext in ['dat', 'xyz']: paths.extend(glob.glob(os.path.join(pointcloud.path, f'*.{ext}'))) for element in paths: if all([x not in os.path.split(element)[-1] for x in ['pc.dat', 'pc.xyz']]): # Assign training data to the data container # Following the original logic; # y should be the label; # pos should be the six dimensional vector describing: !its pos not points!! # x,y,z,x_rot,y_rot,z_rot # Get the y - Label y_raw = next(i for i, v in enumerate(self.categories.keys()) if v.lower() in element.lower()) # y_raw = os.path.splitext(element)[0].split('_')[-2] with open(element,'r') as f: if self.has_headers: headers = f.__next__() # Check if there are no useable nodes in this file, header says 0. if not int(headers.rstrip().split(delimiter)[0]): continue # Iterate over all rows src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0 for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != ''] points = torch.tensor(src, dtype=None).squeeze() if not len(points.shape) > 1: continue # pos = points[:, :3] # norm = points[:, 3:] y_all = [y_raw] * points.shape[0] y = torch.as_tensor(y_all, dtype=torch.int) # points = torch.as_tensor(points, dtype=torch.float) # norm = torch.as_tensor(norm, dtype=torch.float) if self.collate_per_element: data = Data(y=y, pos=points[:, :3]) else: if not data: data = defaultdict(list) for key, val in dict(y=y, pos= points[:, :3]).items(): data[key].append(val) # , points=points, norm=points[:3], ) data = self._transform_and_filter(data) if self.collate_per_element: datasets[data_folder].append(data) if not self.collate_per_element: datasets[data_folder].append(Data(**{key: torch.cat(data[key]) for key in data.keys()})) if datasets[data_folder]: os.makedirs(self.processed_dir, exist_ok=True) torch.save(self.collate(datasets[data_folder]), self.processed_paths[idx]) def __repr__(self): return f'{self.__class__.__name__}({len(self)})' class ShapeNetPartSegDataset(Dataset): """ Resample raw point cloud to fixed number of points. Map raw label from range [1, N] to [0, N-1]. """ def __init__(self, root_dir, collate_per_segment=True, train=True, transform=None, npoints=1024, headers=True): super(ShapeNetPartSegDataset, self).__init__() self.npoints = npoints self.dataset = CustomShapeNet(root=root_dir, collate_per_segment=collate_per_segment, train=train, transform=transform, headers=headers) def __getitem__(self, index): data = self.dataset[index] points, labels = data.pos, data.y # Resample to fixed number of points try: choice = np.random.choice(points.shape[0], self.npoints, replace=True) except ValueError: choice = [] points, labels = points[choice, :], labels[choice] labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1] sample = { 'points': points, # torch.Tensor (n, 3) 'labels': labels # torch.Tensor (n,) } return sample def __len__(self): return len(self.dataset) def num_classes(self): return self.dataset.num_classes class PredictionShapeNet(InMemoryDataset): categories = {key: val for val, key in enumerate(['Box', 'Cone', 'Cylinder', 'Sphere'])} def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True, **kwargs): self.has_headers = headers super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter) path = self.processed_paths[0] self.data, self.slices = torch.load(path) print("Initialized") @property def raw_file_names(self): # Maybe add more data like validation sets return ['predict'] @property def processed_file_names(self): return [f'{x}.pt' for x in self.raw_file_names] def download(self): dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))]) print(f'{dir_count} folders have been found....') if dir_count: return dir_count raise IOError("No raw pointclouds have been found.") @property def num_classes(self): return len(self.categories) def _load_dataset(self): data, slices = None, None while True: try: filepath = os.path.join(self.root, self.processed_dir, f'{"train" if self.train else "test"}.pt') data, slices = torch.load(filepath) print('Dataset Loaded') break except FileNotFoundError: self.process() continue return data, slices def process(self, delimiter=' '): datasets = defaultdict(list) for idx, setting in enumerate(self.raw_file_names): path_to_clouds = os.path.join(self.raw_dir, setting) if '.headers' in os.listdir(path_to_clouds): self.has_headers = True elif 'no.headers' in os.listdir(path_to_clouds): self.has_headers = False else: pass for pointcloud in tqdm(os.scandir(path_to_clouds)): if not os.path.isdir(pointcloud): continue for extention in ['dat', 'xyz']: file = os.path.join(pointcloud.path, f'pc.{extention}') if not os.path.exists(file): continue with open(file, 'r') as f: if self.has_headers: headers = f.__next__() # Check if there are no useable nodes in this file, header says 0. if not int(headers.rstrip().split(delimiter)[0]): continue # Iterate over all rows src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0 for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != ''] points = torch.tensor(src, dtype=None).squeeze() if not len(points.shape) > 1: continue # pos = points[:, :3] # norm = points[:, 3:] y_fake_all = [-1] * points.shape[0] y = torch.as_tensor(y_fake_all, dtype=torch.int) # points = torch.as_tensor(points, dtype=torch.float) # norm = torch.as_tensor(norm, dtype=torch.float) data = Data(y=y, pos=points[:, :3]) # , points=points, norm=points[:3], ) # ToDo: ANy filter to apply? Then do it here. if self.pre_filter is not None and not self.pre_filter(data): data = self.pre_filter(data) raise NotImplementedError # ToDo: ANy transformation to apply? Then do it here. if self.pre_transform is not None: data = self.pre_transform(data) raise NotImplementedError datasets[setting].append(data) os.makedirs(self.processed_dir, exist_ok=True) torch.save(self.collate(datasets[setting]), self.processed_paths[idx]) def __repr__(self): return f'{self.__class__.__name__}({len(self)})' class PredictNetPartSegDataset(Dataset): """ Resample raw point cloud to fixed number of points. Map raw label from range [1, N] to [0, N-1]. """ def __init__(self, root_dir, train=False, transform=None, npoints=2048, headers=True, collate_per_segment=False): super(PredictNetPartSegDataset, self).__init__() self.npoints = npoints self.dataset = PredictionShapeNet(root=root_dir, train=train, transform=transform, headers=headers, collate_per_segment=collate_per_segment) def __getitem__(self, index): data = self.dataset[index] points, labels = data.pos, data.y # Resample to fixed number of points try: choice = np.random.choice(points.shape[0], self.npoints, replace=True) except ValueError: choice = [] points, labels = points[choice, :], labels[choice] labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1] sample = { 'points': points, # torch.Tensor (n, 3) 'labels': labels # torch.Tensor (n,) } return sample def __len__(self): return len(self.dataset) def num_classes(self): return self.dataset.num_classes