import sys import os sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory from dataset.shapenet import PredictNetPartSegDataset, ShapeNetPartSegDataset from model.pointnet2_part_seg import PointNet2PartSegmentNet import torch_geometric.transforms as GT import torch import numpy as np import argparse ## parser = argparse.ArgumentParser() parser.add_argument('--dataset', type=str, default='data', help='dataset path') parser.add_argument('--npoints', type=int, default=2048, help='resample points number') parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_249.pth', help='model path') parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result') opt = parser.parse_args() print(opt) if __name__ == '__main__': # Load dataset print('Construct dataset ..') test_transform = GT.Compose([GT.NormalizeScale(),]) test_dataset = PredictNetPartSegDataset( root_dir=opt.dataset, num_classes=4, transform=None, npoints=opt.npoints, refresh=True ) num_classes = test_dataset.num_classes() print('test dataset size: ', len(test_dataset)) # Load model print('Construct model ..') device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') dtype = torch.float # net = PointNetPartSegmentNet(num_classes) net = PointNet2PartSegmentNet(num_classes) net.load_state_dict(torch.load(opt.model, map_location=device.type)) net = net.to(device, dtype) net.eval() ## def eval_sample(net, sample): ''' sample: { 'points': tensor(n, 3), 'labels': tensor(n,) } return: (pred_label, gt_label) with labels shape (n,) ''' net.eval() with torch.no_grad(): # points: (n, 3) points, gt_label = sample['points'], sample['labels'] n = points.shape[0] points = points.view(1, n, 3) # make a batch points = points.transpose(1, 2).contiguous() points = points.to(device, dtype) pred = net(points) # (batch_size, n, num_classes) pred_label = pred.max(2)[1] pred_label = pred_label.view(-1).cpu() # (n,) assert pred_label.shape == gt_label.shape return (pred_label, gt_label) # Iterate over all the samples for sample in test_dataset: print('Eval test sample ..') pred_label, gt_label = eval_sample(net, sample) print('Eval done ..') pred_labels = pred_label.numpy() print(pred_labels)