File based header detection, collate_per_PC training.

This commit is contained in:
Si11ium
2019-08-01 14:16:50 +02:00
parent 47a76dc978
commit a9bf053794
3 changed files with 77 additions and 75 deletions

View File

@ -5,7 +5,7 @@ import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
from dataset.shapenet import PredictNetPartSegDataset
from dataset.shapenet import ShapeNetPartSegDataset
from model.pointnet2_part_seg import PointNet2PartSegmentNet
import torch_geometric.transforms as GT
import torch
@ -16,8 +16,8 @@ import argparse
##
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='data', help='dataset path')
parser.add_argument('--npoints', type=int, default=50, help='resample points number')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_8.pth', help='model path')
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_249.pth', help='model path')
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
opt = parser.parse_args()
print(opt)
@ -28,8 +28,10 @@ if __name__ == '__main__':
print('Construct dataset ..')
test_transform = GT.Compose([GT.NormalizeScale(),])
test_dataset = PredictNetPartSegDataset(
test_dataset = ShapeNetPartSegDataset(
root_dir=opt.dataset,
collate_per_segment=False,
train=False,
transform=test_transform,
npoints=opt.npoints
)
@ -121,16 +123,17 @@ if __name__ == '__main__':
print('mIoU: ', compute_mIoU(pred_labels, gt_labels))
# View result
if True:
print('View gt labels ..')
view_points_labels(points, gt_labels)
# print('View gt labels ..')
# view_points_labels(points, gt_labels)
if True:
print('View diff labels ..')
print(diff_labels)
view_points_labels(points, diff_labels)
print('View diff labels ..')
print(diff_labels)
view_points_labels(points, diff_labels)
# print('View pred labels ..')
# print(pred_labels)
# view_points_labels(points, pred_labels)
if True:
print('View pred labels ..')
print(pred_labels)
view_points_labels(points, pred_labels)

View File

@ -48,7 +48,7 @@ def label2color(labels):
minl, maxl = np.min(labels), np.max(labels)
for l in range(minl, maxl + 1):
colors[labels==l, :] = mini_color_table(l)
colors[labels == l, :] = mini_color_table(l)
return colors