File based header detection, collate_per_PC training.
This commit is contained in:
@ -5,7 +5,7 @@ import sys
|
||||
import os
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
|
||||
|
||||
from dataset.shapenet import PredictNetPartSegDataset
|
||||
from dataset.shapenet import ShapeNetPartSegDataset
|
||||
from model.pointnet2_part_seg import PointNet2PartSegmentNet
|
||||
import torch_geometric.transforms as GT
|
||||
import torch
|
||||
@ -16,8 +16,8 @@ import argparse
|
||||
##
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dataset', type=str, default='data', help='dataset path')
|
||||
parser.add_argument('--npoints', type=int, default=50, help='resample points number')
|
||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_8.pth', help='model path')
|
||||
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
|
||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_249.pth', help='model path')
|
||||
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
|
||||
opt = parser.parse_args()
|
||||
print(opt)
|
||||
@ -28,8 +28,10 @@ if __name__ == '__main__':
|
||||
print('Construct dataset ..')
|
||||
test_transform = GT.Compose([GT.NormalizeScale(),])
|
||||
|
||||
test_dataset = PredictNetPartSegDataset(
|
||||
test_dataset = ShapeNetPartSegDataset(
|
||||
root_dir=opt.dataset,
|
||||
collate_per_segment=False,
|
||||
train=False,
|
||||
transform=test_transform,
|
||||
npoints=opt.npoints
|
||||
)
|
||||
@ -121,16 +123,17 @@ if __name__ == '__main__':
|
||||
|
||||
print('mIoU: ', compute_mIoU(pred_labels, gt_labels))
|
||||
|
||||
|
||||
# View result
|
||||
if True:
|
||||
print('View gt labels ..')
|
||||
view_points_labels(points, gt_labels)
|
||||
|
||||
# print('View gt labels ..')
|
||||
# view_points_labels(points, gt_labels)
|
||||
if True:
|
||||
print('View diff labels ..')
|
||||
print(diff_labels)
|
||||
view_points_labels(points, diff_labels)
|
||||
|
||||
print('View diff labels ..')
|
||||
print(diff_labels)
|
||||
view_points_labels(points, diff_labels)
|
||||
|
||||
# print('View pred labels ..')
|
||||
# print(pred_labels)
|
||||
# view_points_labels(points, pred_labels)
|
||||
if True:
|
||||
print('View pred labels ..')
|
||||
print(pred_labels)
|
||||
view_points_labels(points, pred_labels)
|
||||
|
@ -48,7 +48,7 @@ def label2color(labels):
|
||||
|
||||
minl, maxl = np.min(labels), np.max(labels)
|
||||
for l in range(minl, maxl + 1):
|
||||
colors[labels==l, :] = mini_color_table(l)
|
||||
colors[labels == l, :] = mini_color_table(l)
|
||||
|
||||
return colors
|
||||
|
||||
|
Reference in New Issue
Block a user