now offering "normals" in sample dict

This commit is contained in:
Si11ium 2019-08-02 10:49:05 +02:00
parent 0f28969ec7
commit 9c100b6c43
6 changed files with 39 additions and 36 deletions

6
.gitignore vendored
View File

@ -127,4 +127,8 @@ dmypy.json
/data/ /data/
/checkpoint/ /checkpoint/
/shapenet/ /shapenet/
/vis/ /vis/data/
/vis/checkpoint
/predict/data/
/predict/checkpoint/

View File

@ -4,7 +4,8 @@
<content url="file://$MODULE_DIR$"> <content url="file://$MODULE_DIR$">
<excludeFolder url="file://$MODULE_DIR$/data" /> <excludeFolder url="file://$MODULE_DIR$/data" />
<excludeFolder url="file://$MODULE_DIR$/net" /> <excludeFolder url="file://$MODULE_DIR$/net" />
<excludeFolder url="file://$MODULE_DIR$/vis" /> <excludeFolder url="file://$MODULE_DIR$/predict/data" />
<excludeFolder url="file://$MODULE_DIR$/shapenet" />
</content> </content>
<orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" /> <orderEntry type="jdk" jdkName="Python 3.7 (torch)" jdkType="Python SDK" />
<orderEntry type="sourceFolder" forTests="false" /> <orderEntry type="sourceFolder" forTests="false" />

View File

@ -14,9 +14,8 @@ import re
def save_names(name_list, path): def save_names(name_list, path):
with open(path, 'wb'): with open(path, 'wb') as f:
pass f.writelines(name_list)
class CustomShapeNet(InMemoryDataset): class CustomShapeNet(InMemoryDataset):
@ -119,20 +118,16 @@ class CustomShapeNet(InMemoryDataset):
points = torch.tensor(src, dtype=None).squeeze() points = torch.tensor(src, dtype=None).squeeze()
if not len(points.shape) > 1: if not len(points.shape) > 1:
continue continue
# pos = points[:, :3]
# norm = points[:, 3:]
y_all = [y_raw] * points.shape[0] y_all = [y_raw] * points.shape[0]
y = torch.as_tensor(y_all, dtype=torch.int) y = torch.as_tensor(y_all, dtype=torch.int)
# points = torch.as_tensor(points, dtype=torch.float)
# norm = torch.as_tensor(norm, dtype=torch.float)
if self.collate_per_element: if self.collate_per_element:
data = Data(y=y, pos=points[:, :3]) data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
else: else:
if not data: if not data:
data = defaultdict(list) data = defaultdict(list)
for key, val in dict(y=y, pos= points[:, :3]).items(): for key, val in dict(y=y, pos=points[:, :3], points=points, norm=points[:, 3:]).items():
data[key].append(val) data[key].append(val)
# , points=points, norm=points[:3], )
data = self._transform_and_filter(data) data = self._transform_and_filter(data)
if self.collate_per_element: if self.collate_per_element:
datasets[data_folder].append(data) datasets[data_folder].append(data)
@ -160,7 +155,7 @@ class ShapeNetPartSegDataset(Dataset):
def __getitem__(self, index): def __getitem__(self, index):
data = self.dataset[index] data = self.dataset[index]
points, labels = data.pos, data.y points, labels, _, norm = data.pos, data.y, data.points, data.norm
# Resample to fixed number of points # Resample to fixed number of points
try: try:
@ -168,13 +163,14 @@ class ShapeNetPartSegDataset(Dataset):
except ValueError: except ValueError:
choice = [] choice = []
points, labels = points[choice, :], labels[choice] points, labels, norm = points[choice, :], labels[choice], norm[choice]
labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1] labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1]
sample = { sample = {
'points': points, # torch.Tensor (n, 3) 'points': points, # torch.Tensor (n, 3)
'labels': labels # torch.Tensor (n,) 'labels': labels, # torch.Tensor (n,)
'normals': norm # torch.Tensor (n,)
} }
return sample return sample
@ -188,11 +184,12 @@ class ShapeNetPartSegDataset(Dataset):
class PredictionShapeNet(InMemoryDataset): class PredictionShapeNet(InMemoryDataset):
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True): def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True, refresh=False):
self.has_headers = headers self.has_headers = headers
self.refresh = refresh
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter) super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
path = self.processed_paths[0] path = self.processed_paths[0]
self.data, self.slices = torch.load(path) self.data, self.slices = self._load_dataset()
print("Initialized") print("Initialized")
@property @property
@ -217,9 +214,18 @@ class PredictionShapeNet(InMemoryDataset):
def _load_dataset(self): def _load_dataset(self):
data, slices = None, None data, slices = None, None
filepath = os.path.join(self.processed_dir, self.processed_file_names[0])
if self.refresh:
try:
os.remove(filepath)
print('Processed Location "Refreshed" (We deleted the Files)')
except FileNotFoundError:
print('You meant to refresh the allready processed dataset, but there were none...')
print('continue processing')
pass
while True: while True:
try: try:
filepath = os.path.join(self.root, self.processed_dir, f'{"train" if self.train else "test"}.pt')
data, slices = torch.load(filepath) data, slices = torch.load(filepath)
print('Dataset Loaded') print('Dataset Loaded')
break break
@ -243,7 +249,7 @@ class PredictionShapeNet(InMemoryDataset):
for pointcloud in tqdm(os.scandir(path_to_clouds)): for pointcloud in tqdm(os.scandir(path_to_clouds)):
if not os.path.isdir(pointcloud): if not os.path.isdir(pointcloud):
continue continue
full_cloud_pattern = '\d+?_pc\.(xyz|dat)' full_cloud_pattern = '(^\d+?_|^)pc\.(xyz|dat)'
pattern = re.compile(full_cloud_pattern) pattern = re.compile(full_cloud_pattern)
for file in os.scandir(pointcloud.path): for file in os.scandir(pointcloud.path):
if not pattern.match(file.name): if not pattern.match(file.name):
@ -267,7 +273,7 @@ class PredictionShapeNet(InMemoryDataset):
y = torch.as_tensor(y_fake_all, dtype=torch.int) y = torch.as_tensor(y_fake_all, dtype=torch.int)
# points = torch.as_tensor(points, dtype=torch.float) # points = torch.as_tensor(points, dtype=torch.float)
# norm = torch.as_tensor(norm, dtype=torch.float) # norm = torch.as_tensor(norm, dtype=torch.float)
data = Data(y=y, pos=points[:, :3]) data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
# , points=points, norm=points[:3], ) # , points=points, norm=points[:3], )
# ToDo: ANy filter to apply? Then do it here. # ToDo: ANy filter to apply? Then do it here.
if self.pre_filter is not None and not self.pre_filter(data): if self.pre_filter is not None and not self.pre_filter(data):
@ -293,29 +299,20 @@ class PredictNetPartSegDataset(Dataset):
Resample raw point cloud to fixed number of points. Resample raw point cloud to fixed number of points.
Map raw label from range [1, N] to [0, N-1]. Map raw label from range [1, N] to [0, N-1].
""" """
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True): def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True, refresh=False):
super(PredictNetPartSegDataset, self).__init__() super(PredictNetPartSegDataset, self).__init__()
self.npoints = npoints self.npoints = npoints
self._num_classes = num_classes self._num_classes = num_classes
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers) self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers, refresh=refresh)
def __getitem__(self, index): def __getitem__(self, index):
data = self.dataset[index] data = self.dataset[index]
points, labels = data.pos, data.y points, labels, _, norm = data.pos, data.y, data.points, data.norm
# Resample to fixed number of points
try:
choice = np.random.choice(points.shape[0], self.npoints, replace=True)
except ValueError:
choice = []
points, labels = points[choice, :], labels[choice]
labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1]
sample = { sample = {
'points': points, # torch.Tensor (n, 3) 'points': points, # torch.Tensor (n, 3)
'labels': labels # torch.Tensor (n,) 'labels': labels, # torch.Tensor (n,)
'normals': norm # torch.Tensor (n,)
} }
return sample return sample

Binary file not shown.

View File

@ -28,7 +28,8 @@ if __name__ == '__main__':
root_dir=opt.dataset, root_dir=opt.dataset,
num_classes=4, num_classes=4,
transform=None, transform=None,
npoints=opt.npoints npoints=opt.npoints,
refresh=True
) )
num_classes = test_dataset.num_classes() num_classes = test_dataset.num_classes()

View File

@ -134,7 +134,7 @@ if __name__ == '__main__':
print(diff_labels) print(diff_labels)
view_points_labels(points, diff_labels) view_points_labels(points, diff_labels)
if False: if True:
print('View pred labels ..') print('View pred labels ..')
print(pred_labels) print(pred_labels)
view_points_labels(points, pred_labels) view_points_labels(points, pred_labels)