merged
This commit is contained in:
commit
97a9db9a32
@ -17,24 +17,28 @@ def save_names(name_list, path):
|
||||
with open(path, 'wb') as f:
|
||||
f.writelines(name_list)
|
||||
|
||||
|
||||
class CustomShapeNet(InMemoryDataset):
|
||||
|
||||
categories = {key: val for val, key in enumerate(['Box', 'Cone', 'Cylinder', 'Sphere'])}
|
||||
modes = {key: val for val, key in enumerate(['train', 'test', 'predict'])}
|
||||
|
||||
def __init__(self, root, collate_per_segment=True, train=True, transform=None, pre_filter=None, pre_transform=None,
|
||||
headers=True, **kwargs):
|
||||
self.has_headers = headers
|
||||
self.collate_per_element = collate_per_segment
|
||||
self.train = train
|
||||
super(CustomShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
|
||||
path = self.processed_paths[0] if train else self.processed_paths[-1]
|
||||
self.data, self.slices = torch.load(path)
|
||||
def __init__(self, root_dir, collate_per_segment=True, mode='train', transform=None, pre_filter=None,
|
||||
pre_transform=None, headers=True, has_variations=False, refresh=False, labels_within=False):
|
||||
assert mode in self.modes.keys(), f'"mode" must be one of {self.modes.keys()}'
|
||||
assert not (collate_per_segment and has_variations), 'Either use each element or pointclouds - with variations'
|
||||
|
||||
#Set the Dataset Parameters
|
||||
self.has_headers, self.has_variations, self.labels_within = headers, has_variations, labels_within
|
||||
self.collate_per_element, self.mode, self.refresh = collate_per_segment, mode, refresh
|
||||
super(CustomShapeNet, self).__init__(root_dir, transform, pre_transform, pre_filter)
|
||||
self.data, self.slices = self._load_dataset()
|
||||
print("Initialized")
|
||||
|
||||
@property
|
||||
def raw_file_names(self):
|
||||
# Maybe add more data like validation sets
|
||||
return ['train', 'test']
|
||||
return list(self.modes.keys())
|
||||
|
||||
@property
|
||||
def processed_file_names(self):
|
||||
@ -53,9 +57,18 @@ class CustomShapeNet(InMemoryDataset):
|
||||
|
||||
def _load_dataset(self):
|
||||
data, slices = None, None
|
||||
filepath = self.processed_paths[self.modes[self.mode]]
|
||||
if self.refresh:
|
||||
try:
|
||||
os.remove(filepath)
|
||||
print('Processed Location "Refreshed" (We deleted the Files)')
|
||||
except FileNotFoundError:
|
||||
print('You meant to refresh the allready processed dataset, but there were none...')
|
||||
print('continue processing')
|
||||
pass
|
||||
|
||||
while True:
|
||||
try:
|
||||
filepath = os.path.join(self.root, self.processed_dir, f'{"train" if self.train else "test"}.pt')
|
||||
data, slices = torch.load(filepath)
|
||||
print('Dataset Loaded')
|
||||
break
|
||||
@ -77,7 +90,7 @@ class CustomShapeNet(InMemoryDataset):
|
||||
|
||||
def process(self, delimiter=' '):
|
||||
datasets = defaultdict(list)
|
||||
idx, data_folder = (0, self.raw_file_names[0]) if self.train else (1, self.raw_file_names[1])
|
||||
idx, data_folder = self.modes[self.mode], self.raw_file_names[self.modes[self.mode]]
|
||||
path_to_clouds = os.path.join(self.raw_dir, data_folder)
|
||||
|
||||
if '.headers' in os.listdir(path_to_clouds):
|
||||
@ -88,6 +101,8 @@ class CustomShapeNet(InMemoryDataset):
|
||||
pass
|
||||
|
||||
for pointcloud in tqdm(os.scandir(path_to_clouds)):
|
||||
if self.has_variations:
|
||||
cloud_variations = defaultdict(list)
|
||||
if not os.path.isdir(pointcloud):
|
||||
continue
|
||||
data, paths = None, list()
|
||||
@ -95,16 +110,11 @@ class CustomShapeNet(InMemoryDataset):
|
||||
paths.extend(glob.glob(os.path.join(pointcloud.path, f'*.{ext}')))
|
||||
|
||||
for element in paths:
|
||||
if all([x not in os.path.split(element)[-1] for x in ['pc.dat', 'pc.xyz']]):
|
||||
# Assign training data to the data container
|
||||
# Following the original logic;
|
||||
# y should be the label;
|
||||
# pos should be the six dimensional vector describing: !its pos not points!!
|
||||
# x,y,z,x_rot,y_rot,z_rot
|
||||
|
||||
# Get the y - Label
|
||||
y_raw = next(i for i, v in enumerate(self.categories.keys()) if v.lower() in element.lower())
|
||||
# y_raw = os.path.splitext(element)[0].split('_')[-2]
|
||||
# This was build to filter all variations that aregreater then 25
|
||||
pattern = re.compile('^((6[0-1]|[1-5][0-9])_\w+?\d+?|pc|\d+?_pc)\.(xyz|dat)$')
|
||||
if pattern.match(os.path.split(element)[-1]):
|
||||
continue
|
||||
else:
|
||||
with open(element,'r') as f:
|
||||
if self.has_headers:
|
||||
headers = f.__next__()
|
||||
@ -118,21 +128,36 @@ class CustomShapeNet(InMemoryDataset):
|
||||
points = torch.tensor(src, dtype=None).squeeze()
|
||||
if not len(points.shape) > 1:
|
||||
continue
|
||||
y_all = [y_raw] * points.shape[0]
|
||||
# Place Fake Labels to hold the given structure
|
||||
if self.labels_within:
|
||||
y_all = points[:, -1]
|
||||
points = points[:, :-1]
|
||||
else:
|
||||
# Get the y - Label
|
||||
y_raw = next(i for i, v in enumerate(self.categories.keys()) if v.lower() in element.lower())
|
||||
y_all = ([y_raw] if self.mode != 'predict' else [-1]) * points.shape[0]
|
||||
|
||||
y = torch.as_tensor(y_all, dtype=torch.int)
|
||||
if self.collate_per_element:
|
||||
data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
|
||||
data = Data(y=y, pos=points[:, :3]) # , points=points, norm=points[:, 3:])
|
||||
else:
|
||||
if not data:
|
||||
data = defaultdict(list)
|
||||
for key, val in dict(y=y, pos=points[:, :3], points=points, norm=points[:, 3:]).items():
|
||||
# points=points, norm=points[:, 3:]
|
||||
for key, val in dict(y=y, pos=points[:, :3]).items():
|
||||
data[key].append(val)
|
||||
|
||||
data = self._transform_and_filter(data)
|
||||
if self.collate_per_element:
|
||||
datasets[data_folder].append(data)
|
||||
if self.has_variations:
|
||||
cloud_variations[int(os.path.split(element)[-1].split('_')[0])].append(data)
|
||||
if not self.collate_per_element:
|
||||
datasets[data_folder].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
|
||||
if self.has_variations:
|
||||
for variation in cloud_variations.keys():
|
||||
datasets[data_folder].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
|
||||
else:
|
||||
datasets[data_folder].append(Data(**{key: torch.cat(data[key]) for key in data.keys()}))
|
||||
|
||||
if datasets[data_folder]:
|
||||
os.makedirs(self.processed_dir, exist_ok=True)
|
||||
@ -147,15 +172,15 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
Resample raw point cloud to fixed number of points.
|
||||
Map raw label from range [1, N] to [0, N-1].
|
||||
"""
|
||||
def __init__(self, root_dir, collate_per_segment=True, train=True, transform=None, npoints=1024, headers=True):
|
||||
def __init__(self, root_dir, npoints=1024, **kwargs):
|
||||
super(ShapeNetPartSegDataset, self).__init__()
|
||||
kwargs.update(dict(root_dir=root_dir))
|
||||
self.npoints = npoints
|
||||
self.dataset = CustomShapeNet(root=root_dir, collate_per_segment=collate_per_segment,
|
||||
train=train, transform=transform, headers=headers)
|
||||
self.dataset = CustomShapeNet(**kwargs)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = self.dataset[index]
|
||||
points, labels, _, norm = data.pos, data.y, data.points, data.norm
|
||||
points, labels = data.pos, data.y # , data.points, data.norm
|
||||
|
||||
# Resample to fixed number of points
|
||||
try:
|
||||
@ -163,14 +188,13 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
except ValueError:
|
||||
choice = []
|
||||
|
||||
points, labels, norm = points[choice, :], labels[choice], norm[choice]
|
||||
points, labels = points[choice, :], labels[choice]
|
||||
|
||||
labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1]
|
||||
|
||||
sample = {
|
||||
'points': points, # torch.Tensor (n, 3)
|
||||
'labels': labels, # torch.Tensor (n,)
|
||||
'normals': norm # torch.Tensor (n,)
|
||||
'labels': labels # torch.Tensor (n,)
|
||||
}
|
||||
|
||||
return sample
|
||||
@ -180,144 +204,3 @@ class ShapeNetPartSegDataset(Dataset):
|
||||
|
||||
def num_classes(self):
|
||||
return self.dataset.num_classes
|
||||
|
||||
|
||||
class PredictionShapeNet(InMemoryDataset):
|
||||
|
||||
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True, refresh=False):
|
||||
self.has_headers = headers
|
||||
self.refresh = refresh
|
||||
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
|
||||
path = self.processed_paths[0]
|
||||
self.data, self.slices = self._load_dataset()
|
||||
print("Initialized")
|
||||
|
||||
@property
|
||||
def raw_file_names(self):
|
||||
# Maybe add more data like validation sets
|
||||
return ['predict']
|
||||
|
||||
@property
|
||||
def processed_file_names(self):
|
||||
return [f'{x}.pt' for x in self.raw_file_names]
|
||||
|
||||
def download(self):
|
||||
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
|
||||
print(f'{dir_count} folders have been found....')
|
||||
if dir_count:
|
||||
return dir_count
|
||||
raise IOError("No raw pointclouds have been found.")
|
||||
|
||||
@property
|
||||
def num_classes(self):
|
||||
return len(self.categories)
|
||||
|
||||
def _load_dataset(self):
|
||||
data, slices = None, None
|
||||
filepath = os.path.join(self.processed_dir, self.processed_file_names[0])
|
||||
if self.refresh:
|
||||
try:
|
||||
os.remove(filepath)
|
||||
print('Processed Location "Refreshed" (We deleted the Files)')
|
||||
except FileNotFoundError:
|
||||
print('You meant to refresh the allready processed dataset, but there were none...')
|
||||
print('continue processing')
|
||||
pass
|
||||
|
||||
while True:
|
||||
try:
|
||||
data, slices = torch.load(filepath)
|
||||
print('Dataset Loaded')
|
||||
break
|
||||
except FileNotFoundError:
|
||||
self.process()
|
||||
continue
|
||||
return data, slices
|
||||
|
||||
def process(self, delimiter=' '):
|
||||
|
||||
datasets, filenames = defaultdict(list), []
|
||||
path_to_clouds = os.path.join(self.raw_dir, self.raw_file_names[0])
|
||||
|
||||
if '.headers' in os.listdir(path_to_clouds):
|
||||
self.has_headers = True
|
||||
elif 'no.headers' in os.listdir(path_to_clouds):
|
||||
self.has_headers = False
|
||||
else:
|
||||
pass
|
||||
|
||||
for pointcloud in tqdm(os.scandir(path_to_clouds)):
|
||||
if not os.path.isdir(pointcloud):
|
||||
continue
|
||||
full_cloud_pattern = '(^\d+?_|^)pc\.(xyz|dat)'
|
||||
pattern = re.compile(full_cloud_pattern)
|
||||
for file in os.scandir(pointcloud.path):
|
||||
if not pattern.match(file.name):
|
||||
continue
|
||||
with open(file, 'r') as f:
|
||||
if self.has_headers:
|
||||
headers = f.__next__()
|
||||
# Check if there are no useable nodes in this file, header says 0.
|
||||
if not int(headers.rstrip().split(delimiter)[0]):
|
||||
continue
|
||||
|
||||
# Iterate over all rows
|
||||
src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0
|
||||
for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != '']
|
||||
points = torch.tensor(src, dtype=None).squeeze()
|
||||
if not len(points.shape) > 1:
|
||||
continue
|
||||
# pos = points[:, :3]
|
||||
# norm = points[:, 3:]
|
||||
y_fake_all = [-1] * points.shape[0]
|
||||
y = torch.as_tensor(y_fake_all, dtype=torch.int)
|
||||
# points = torch.as_tensor(points, dtype=torch.float)
|
||||
# norm = torch.as_tensor(norm, dtype=torch.float)
|
||||
data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:])
|
||||
# , points=points, norm=points[:3], )
|
||||
# ToDo: ANy filter to apply? Then do it here.
|
||||
if self.pre_filter is not None and not self.pre_filter(data):
|
||||
data = self.pre_filter(data)
|
||||
raise NotImplementedError
|
||||
# ToDo: ANy transformation to apply? Then do it here.
|
||||
if self.pre_transform is not None:
|
||||
data = self.pre_transform(data)
|
||||
raise NotImplementedError
|
||||
datasets[self.raw_file_names[0]].append(data)
|
||||
filenames.append(file)
|
||||
|
||||
os.makedirs(self.processed_dir, exist_ok=True)
|
||||
torch.save(self.collate(datasets[self.raw_file_names[0]]), self.processed_paths[0])
|
||||
# save_names(filenames)
|
||||
|
||||
def __repr__(self):
|
||||
return f'{self.__class__.__name__}({len(self)})'
|
||||
|
||||
|
||||
class PredictNetPartSegDataset(Dataset):
|
||||
"""
|
||||
Resample raw point cloud to fixed number of points.
|
||||
Map raw label from range [1, N] to [0, N-1].
|
||||
"""
|
||||
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True, refresh=False):
|
||||
super(PredictNetPartSegDataset, self).__init__()
|
||||
self.npoints = npoints
|
||||
self._num_classes = num_classes
|
||||
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers, refresh=refresh)
|
||||
|
||||
def __getitem__(self, index):
|
||||
data = self.dataset[index]
|
||||
points, labels, _, norm = data.pos, data.y, data.points, data.norm
|
||||
|
||||
sample = {
|
||||
'points': points, # torch.Tensor (n, 3)
|
||||
'labels': labels, # torch.Tensor (n,)
|
||||
'normals': norm # torch.Tensor (n,)
|
||||
}
|
||||
return sample
|
||||
|
||||
def __len__(self):
|
||||
return len(self.dataset)
|
||||
|
||||
def num_classes(self):
|
||||
return self._num_classes
|
||||
|
43
main.py
43
main.py
@ -33,11 +33,15 @@ parser.add_argument('--npoints', type=int, default=1024, help='resample points n
|
||||
parser.add_argument('--model', type=str, default='', help='model path')
|
||||
parser.add_argument('--nepoch', type=int, default=250, help='number of epochs to train for')
|
||||
parser.add_argument('--outf', type=str, default='checkpoint', help='output folder')
|
||||
parser.add_argument('--labels_within', type=strtobool, default=False, help='defines the label location')
|
||||
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
|
||||
parser.add_argument('--test_per_batches', type=int, default=1000, help='run a test batch per training batches number')
|
||||
parser.add_argument('--num_workers', type=int, default=4, help='number of data loading workers')
|
||||
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
||||
parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub')
|
||||
parser.add_argument('--has_variations', type=strtobool, default=False,
|
||||
help='whether a single pointcloud has variations '
|
||||
'named int(id)_pc.(xyz|dat) look at pointclouds or sub')
|
||||
|
||||
|
||||
opt = parser.parse_args()
|
||||
@ -53,28 +57,34 @@ torch.manual_seed(opt.manual_seed)
|
||||
torch.cuda.manual_seed(opt.manual_seed)
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
# Dataset and transform
|
||||
print('Construct dataset ..')
|
||||
if True:
|
||||
rot_max_angle = 15
|
||||
trans_max_distance = 0.01
|
||||
|
||||
RotTransform = GT.Compose([GT.RandomRotate(rot_max_angle, 0),
|
||||
GT.RandomRotate(rot_max_angle, 1),
|
||||
GT.RandomRotate(rot_max_angle, 2)]
|
||||
)
|
||||
TransTransform = GT.RandomTranslate(trans_max_distance)
|
||||
rot_max_angle = 15
|
||||
trans_max_distance = 0.01
|
||||
|
||||
train_transform = GT.Compose([GT.NormalizeScale(), RotTransform, TransTransform])
|
||||
test_transform = GT.Compose([GT.NormalizeScale(), ])
|
||||
RotTransform = GT.Compose([GT.RandomRotate(rot_max_angle, 0),
|
||||
GT.RandomRotate(rot_max_angle, 1),
|
||||
GT.RandomRotate(rot_max_angle, 2)]
|
||||
)
|
||||
|
||||
dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, collate_per_segment=opt.collate_per_segment,
|
||||
train=True, transform=train_transform, npoints=opt.npoints, headers=opt.headers)
|
||||
TransTransform = GT.RandomTranslate(trans_max_distance)
|
||||
train_transform = GT.Compose([GT.NormalizeScale(), RotTransform, TransTransform])
|
||||
test_transform = GT.Compose([GT.NormalizeScale(), ])
|
||||
|
||||
params = dict(root_dir=opt.dataset,
|
||||
collate_per_segment=opt.collate_per_segment,
|
||||
transform=train_transform,
|
||||
npoints=opt.npoints,
|
||||
labels_within=opt.labels_within,
|
||||
has_variations=opt.has_variations,
|
||||
headers=opt.headers
|
||||
)
|
||||
|
||||
dataset = ShapeNetPartSegDataset(mode='train', **params)
|
||||
dataLoader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
|
||||
|
||||
test_dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, collate_per_segment=opt.collate_per_segment,
|
||||
train=False, transform=test_transform, npoints=opt.npoints, headers=opt.headers)
|
||||
test_dataset = ShapeNetPartSegDataset(mode='test', **params)
|
||||
test_dataLoader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
|
||||
|
||||
num_classes = dataset.num_classes()
|
||||
@ -118,7 +128,8 @@ if __name__ == '__main__':
|
||||
print('Epoch {}, total epoches {}'.format(epoch+1, opt.nepoch))
|
||||
|
||||
net.train()
|
||||
|
||||
# ToDo: We need different dataloader here to train the network in multiple iterations, maybe move the loop down
|
||||
# for dataloader in ...
|
||||
for batch_idx, sample in enumerate(dataLoader):
|
||||
# points: (batch_size, n, 3)
|
||||
# labels: (batch_size, n)
|
||||
|
Binary file not shown.
File diff suppressed because it is too large
Load Diff
@ -2,7 +2,10 @@ import sys
|
||||
import os
|
||||
import shutil
|
||||
import math
|
||||
from dataset.shapenet import PredictNetPartSegDataset
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
|
||||
|
||||
from dataset.shapenet import ShapeNetPartSegDataset
|
||||
from model.pointnet2_part_seg import PointNet2PartSegmentNet
|
||||
import torch_geometric.transforms as GT
|
||||
import torch
|
||||
@ -237,7 +240,7 @@ sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add proj
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--dataset', type=str, default='data', help='dataset path')
|
||||
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
|
||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_241.pth', help='model path')
|
||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_246.pth', help='model path')
|
||||
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
|
||||
opt = parser.parse_args()
|
||||
print(opt)
|
||||
@ -279,12 +282,12 @@ if __name__ == '__main__':
|
||||
print('load dataset ..')
|
||||
test_transform = GT.Compose([GT.NormalizeScale(), ])
|
||||
|
||||
test_dataset = PredictNetPartSegDataset(
|
||||
test_dataset = ShapeNetPartSegDataset(
|
||||
mode='predict',
|
||||
root_dir=opt.dataset,
|
||||
num_classes=4,
|
||||
transform=None,
|
||||
npoints=opt.npoints,
|
||||
refresh=True
|
||||
refresh=False
|
||||
)
|
||||
num_classes = test_dataset.num_classes()
|
||||
|
||||
|
@ -28,10 +28,10 @@ if __name__ == '__main__':
|
||||
print('Construct dataset ..')
|
||||
test_transform = GT.Compose([GT.NormalizeScale(),])
|
||||
|
||||
test_dataset = PredictNetPartSegDataset(
|
||||
test_dataset = ShapeNetPartSegDataset(
|
||||
root_dir=opt.dataset,
|
||||
collate_per_segment=False,
|
||||
train=False,
|
||||
mode='predict',
|
||||
transform=test_transform,
|
||||
npoints=opt.npoints
|
||||
)
|
||||
|
Loading…
x
Reference in New Issue
Block a user