Added normals to prediction DataObject
This commit is contained in:
parent
4e1fcdfd43
commit
8eb165f76c
@ -46,8 +46,9 @@ class CustomShapeNet(InMemoryDataset):
|
|||||||
|
|
||||||
def download(self):
|
def download(self):
|
||||||
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
|
dir_count = len([name for name in os.listdir(self.raw_dir) if os.path.isdir(os.path.join(self.raw_dir, name))])
|
||||||
print(f'{dir_count} folders have been found....')
|
|
||||||
if dir_count:
|
if dir_count:
|
||||||
|
print(f'{dir_count} folders have been found....')
|
||||||
return dir_count
|
return dir_count
|
||||||
raise IOError("No raw pointclouds have been found.")
|
raise IOError("No raw pointclouds have been found.")
|
||||||
|
|
||||||
@ -179,6 +180,7 @@ class ShapeNetPartSegDataset(Dataset):
|
|||||||
Resample raw point cloud to fixed number of points.
|
Resample raw point cloud to fixed number of points.
|
||||||
Map raw label from range [1, N] to [0, N-1].
|
Map raw label from range [1, N] to [0, N-1].
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __init__(self, root_dir, npoints=1024, mode='train', **kwargs):
|
def __init__(self, root_dir, npoints=1024, mode='train', **kwargs):
|
||||||
super(ShapeNetPartSegDataset, self).__init__()
|
super(ShapeNetPartSegDataset, self).__init__()
|
||||||
self.mode = mode
|
self.mode = mode
|
||||||
@ -191,7 +193,8 @@ class ShapeNetPartSegDataset(Dataset):
|
|||||||
|
|
||||||
# Resample to fixed number of points
|
# Resample to fixed number of points
|
||||||
try:
|
try:
|
||||||
choice = np.random.choice(data.pos.shape[0], self.npoints, replace=True)
|
npoints = self.npoints if self.mode != 'predict' else data.pos.shape[0]
|
||||||
|
choice = np.random.choice(data.pos.shape[0], npoints, replace=False)
|
||||||
except ValueError:
|
except ValueError:
|
||||||
choice = []
|
choice = []
|
||||||
|
|
||||||
@ -204,7 +207,7 @@ class ShapeNetPartSegDataset(Dataset):
|
|||||||
'labels': labels # torch.Tensor (n,)
|
'labels': labels # torch.Tensor (n,)
|
||||||
}
|
}
|
||||||
if self.mode == 'predict':
|
if self.mode == 'predict':
|
||||||
normals = data.normals[choice]
|
normals = data.normals[choice, :]
|
||||||
sample.update(normals=normals)
|
sample.update(normals=normals)
|
||||||
|
|
||||||
return sample
|
return sample
|
||||||
|
5
main.py
5
main.py
@ -33,10 +33,10 @@ parser.add_argument('--npoints', type=int, default=1024, help='resample points n
|
|||||||
parser.add_argument('--model', type=str, default='', help='model path')
|
parser.add_argument('--model', type=str, default='', help='model path')
|
||||||
parser.add_argument('--nepoch', type=int, default=250, help='number of epochs to train for')
|
parser.add_argument('--nepoch', type=int, default=250, help='number of epochs to train for')
|
||||||
parser.add_argument('--outf', type=str, default='checkpoint', help='output folder')
|
parser.add_argument('--outf', type=str, default='checkpoint', help='output folder')
|
||||||
parser.add_argument('--labels_within', type=strtobool, default=False, help='defines the label location')
|
parser.add_argument('--labels_within', type=strtobool, default=True, help='defines the label location')
|
||||||
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
|
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
|
||||||
parser.add_argument('--test_per_batches', type=int, default=1000, help='run a test batch per training batches number')
|
parser.add_argument('--test_per_batches', type=int, default=1000, help='run a test batch per training batches number')
|
||||||
parser.add_argument('--num_workers', type=int, default=4, help='number of data loading workers')
|
parser.add_argument('--num_workers', type=int, default=1, help='number of data loading workers')
|
||||||
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
||||||
parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub')
|
parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub')
|
||||||
parser.add_argument('--has_variations', type=strtobool, default=False,
|
parser.add_argument('--has_variations', type=strtobool, default=False,
|
||||||
@ -129,7 +129,6 @@ if __name__ == '__main__':
|
|||||||
|
|
||||||
net.train()
|
net.train()
|
||||||
# ToDo: We need different dataloader here to train the network in multiple iterations, maybe move the loop down
|
# ToDo: We need different dataloader here to train the network in multiple iterations, maybe move the loop down
|
||||||
# for dataloader in ...
|
|
||||||
for batch_idx, sample in enumerate(dataLoader):
|
for batch_idx, sample in enumerate(dataLoader):
|
||||||
# points: (batch_size, n, 3)
|
# points: (batch_size, n, 3)
|
||||||
# labels: (batch_size, n)
|
# labels: (batch_size, n)
|
||||||
|
@ -8,7 +8,7 @@ from torch_geometric.utils.num_nodes import maybe_num_nodes
|
|||||||
from torch_geometric.data.data import Data
|
from torch_geometric.data.data import Data
|
||||||
from torch_scatter import scatter_add, scatter_max
|
from torch_scatter import scatter_add, scatter_max
|
||||||
|
|
||||||
GLOBAL_POINT_FEATURES = 3
|
GLOBAL_POINT_FEATURES = 6
|
||||||
|
|
||||||
class PointNet2SAModule(torch.nn.Module):
|
class PointNet2SAModule(torch.nn.Module):
|
||||||
def __init__(self, sample_radio, radius, max_num_neighbors, mlp):
|
def __init__(self, sample_radio, radius, max_num_neighbors, mlp):
|
||||||
|
200
predict/clusters.txt
Normal file
200
predict/clusters.txt
Normal file
@ -0,0 +1,200 @@
|
|||||||
|
48
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
7.199833552042643747e-01 1.481056722005208437e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
5 6
|
||||||
|
3.199843406677246316e-01 1.547723388671875089e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 1.481056722005208437e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
2 6
|
||||||
|
7.199833552042643747e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
6.533166885375976118e-01 1.481056722005208437e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
3.000000000000000000e+00
|
||||||
|
4 6
|
||||||
|
2.533176740010579242e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.199843406677246316e-01 1.347723388671874911e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.281056722005208259e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 1.281056722005208259e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
11 6
|
||||||
|
3.199843406677246316e-01 1.947723388671875000e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.947723388671875000e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.814390055338541696e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
5.199833234151204353e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
5.199833234151204353e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.199843406677246316e-01 1.814390055338541696e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 2.081056722005208304e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
8 6
|
||||||
|
3.199843406677246316e-01 2.214390055338541607e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 2.081056722005208304e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 2.214390055338541607e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
5.199833234151204353e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 2.281056722005208481e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
5.199833234151204353e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
4 6
|
||||||
|
7.199833552042643747e-01 1.947723388671875000e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
6.533166885375976118e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
7.199833552042643747e-01 2.081056722005208304e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
6.533166885375976118e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.866510073343912723e-01 2.281056722005208481e+00 5.645600001017252456e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.199833234151204353e-01 2.281056722005208481e+00 5.645600001017252456e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
6.533166885375976118e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.331766605377197266e-02 2.214390055338541607e+00 6.312266667683918975e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 2.147723388671875178e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 2.014390055338541874e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
2 6
|
||||||
|
5.331766605377197266e-02 2.081056722005208304e+00 6.312266667683918975e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.199843327204386384e-01 2.081056722005208304e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.947723388671875000e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
5 6
|
||||||
|
3.199843406677246316e-01 2.281056722005208481e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.199843406677246316e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 2.214390055338541607e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 2.281056722005208481e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 2.214390055338541607e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
5 6
|
||||||
|
5.199833234151204353e-01 1.547723388671875089e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 1.681056722005208393e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.614390055338541741e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.481056722005208437e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
5.866500218709309600e-01 1.614390055338541741e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.331766605377197266e-02 1.881056722005208348e+00 6.312266667683918975e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
7.199833552042643747e-01 1.747723388671875044e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.866500218709309600e-01 1.747723388671875044e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
2 6
|
||||||
|
5.866500218709309600e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
5.199833234151204353e-01 1.547723388671875089e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
8 6
|
||||||
|
5.199833234151204353e-01 1.814390055338541696e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.866510073343912723e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.947723388671875000e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.199843406677246316e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
5.866500218709309600e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
4.533166567484537834e-01 1.881056722005208348e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.866499900817871316e-01 1.814390055338541696e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.000000000000000000e+00
|
||||||
|
2 6
|
||||||
|
5.199833234151204353e-01 1.281056722005208259e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
5.866500218709309600e-01 1.347723388671874911e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.866500218709309600e-01 1.414390055338541563e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
3 6
|
||||||
|
6.533166885375976118e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
6.533166885375976118e-01 2.281056722005208481e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
7.199833552042643747e-01 2.214390055338541607e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.199833234151204353e-01 1.281056722005208259e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
3.000000000000000000e+00
|
||||||
|
6 6
|
||||||
|
3.866499900817871316e-01 1.347723388671874911e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.347723388671874911e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.199843406677246316e-01 1.414390055338541563e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.481056722005208437e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
2.533176740010579242e-01 1.614390055338541741e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.199843406677246316e-01 1.547723388671875089e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.814390055338541696e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.414390055338541563e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.281056722005208259e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 2.147723388671875178e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
3.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.347723388671874911e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
7.199833552042643747e-01 1.614390055338541741e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
7.199833552042643747e-01 2.281056722005208481e+00 6.312266667683918975e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.866500218709309600e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.547723388671875089e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.866510073343912723e-01 1.747723388671875044e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
2.533176740010579242e-01 2.081056722005208304e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
3.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
7.199833552042643747e-01 1.281056722005208259e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
7.199833552042643747e-01 1.881056722005208348e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
6.533166885375976118e-01 2.014390055338541874e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.481056722005208437e+00 5.645600001017252456e-01 -9.993677590519846055e-01 -4.875568776990416931e-04 -3.555059008941406640e-02
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
1.199843327204386384e-01 1.414390055338541563e+00 4.978933334350585938e-01 3.555141376242736823e-02 -1.702250673669388707e-03 -9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
2.533176740010579242e-01 1.747723388671875044e+00 6.312266667683918975e-01 -3.555141376242736823e-02 1.702250673669388707e-03 9.993663989359141686e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
5.866500218709309600e-01 2.281056722005208481e+00 6.312266667683918975e-01 -2.872351790370336957e-02 6.003545025065727403e-01 7.992180120838876523e-01
|
||||||
|
1.000000000000000000e+00
|
||||||
|
1 6
|
||||||
|
3.866499900817871316e-01 2.281056722005208481e+00 5.645600001017252456e-01 -4.267321706433224227e-04 9.999984323090402860e-01 -1.718510726318397703e-03
|
File diff suppressed because it is too large
Load Diff
101251
predict/pointclouds/1_pc.xyz
Normal file
101251
predict/pointclouds/1_pc.xyz
Normal file
File diff suppressed because it is too large
Load Diff
@ -227,7 +227,7 @@ def draw_clusters(clusters):
|
|||||||
def draw_sample_data(sample_data, colored_normals = False):
|
def draw_sample_data(sample_data, colored_normals = False):
|
||||||
|
|
||||||
cloud = o3d.PointCloud()
|
cloud = o3d.PointCloud()
|
||||||
cloud.points = o3d.Vector3dVector(sample_data[:,:3])
|
cloud.points = o3d.Vector3dVector(sample_data[:, :3])
|
||||||
cloud.colors = \
|
cloud.colors = \
|
||||||
o3d.Vector3dVector(label2color(sample_data[:, 6].astype(int)) if not colored_normals else sample_data[:, 3:6])
|
o3d.Vector3dVector(label2color(sample_data[:, 6].astype(int)) if not colored_normals else sample_data[:, 3:6])
|
||||||
|
|
||||||
@ -243,7 +243,7 @@ sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add proj
|
|||||||
|
|
||||||
parser = argparse.ArgumentParser()
|
parser = argparse.ArgumentParser()
|
||||||
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
|
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
|
||||||
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_30.pth', help='model path')
|
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_3.pth', help='model path')
|
||||||
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
|
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
|
||||||
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
||||||
parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub')
|
parser.add_argument('--collate_per_segment', type=strtobool, default=True, help='whether to look at pointclouds or sub')
|
||||||
@ -260,7 +260,7 @@ if __name__ == '__main__':
|
|||||||
print('Create data set ..')
|
print('Create data set ..')
|
||||||
|
|
||||||
dataset_folder = './data/raw/predict/'
|
dataset_folder = './data/raw/predict/'
|
||||||
pointcloud_file = './pointclouds/0_pc.xyz'
|
pointcloud_file = './pointclouds/1_pc.xyz'
|
||||||
|
|
||||||
# Load and pre-process point cloud
|
# Load and pre-process point cloud
|
||||||
pcloud = pc.read_pointcloud(pointcloud_file)
|
pcloud = pc.read_pointcloud(pointcloud_file)
|
||||||
@ -304,7 +304,7 @@ if __name__ == '__main__':
|
|||||||
mode='predict',
|
mode='predict',
|
||||||
root_dir='data',
|
root_dir='data',
|
||||||
npoints=opt.npoints,
|
npoints=opt.npoints,
|
||||||
refresh=False,
|
refresh=True,
|
||||||
collate_per_segment=opt.collate_per_segment,
|
collate_per_segment=opt.collate_per_segment,
|
||||||
has_variations=opt.has_variations,
|
has_variations=opt.has_variations,
|
||||||
headers=opt.headers
|
headers=opt.headers
|
||||||
|
Loading…
x
Reference in New Issue
Block a user