diff --git a/dataset/shapenet.py b/dataset/shapenet.py index be243e0..f63a857 100644 --- a/dataset/shapenet.py +++ b/dataset/shapenet.py @@ -134,11 +134,12 @@ class CustomShapeNet(InMemoryDataset): y_all = [y_raw] * points.shape[0] y = torch.as_tensor(y_all, dtype=torch.int) if self.collate_per_element: - data = Data(y=y, pos=points[:, :3], points=points, norm=points[:, 3:]) + data = Data(y=y, pos=points[:, :3]) # , points=points, norm=points[:, 3:]) else: if not data: data = defaultdict(list) - for key, val in dict(y=y, pos=points[:, :3], points=points, norm=points[:, 3:]).items(): + # points=points, norm=points[:, 3:] + for key, val in dict(y=y, pos=points[:, :3]).items(): data[key].append(val) data = self._transform_and_filter(data) @@ -175,7 +176,7 @@ class ShapeNetPartSegDataset(Dataset): def __getitem__(self, index): data = self.dataset[index] - points, labels, _, norm = data.pos, data.y, data.points, data.norm + points, labels = data.pos, data.y # , data.points, data.norm # Resample to fixed number of points try: @@ -183,14 +184,13 @@ class ShapeNetPartSegDataset(Dataset): except ValueError: choice = [] - points, labels, norm = points[choice, :], labels[choice], norm[choice] + points, labels = points[choice, :], labels[choice] labels -= 1 if self.num_classes() in labels else 0 # Map label from [1, C] to [0, C-1] sample = { 'points': points, # torch.Tensor (n, 3) - 'labels': labels, # torch.Tensor (n,) - 'normals': norm # torch.Tensor (n,) + 'labels': labels # torch.Tensor (n,) } return sample