Final *hopefully* adjustments
This commit is contained in:
parent
ff117ea2f2
commit
22ea950d85
6
.idea/other.xml
generated
Normal file
6
.idea/other.xml
generated
Normal file
@ -0,0 +1,6 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8"?>
|
||||||
|
<project version="4">
|
||||||
|
<component name="PySciProjectComponent">
|
||||||
|
<option name="PY_SCI_VIEW_SUGGESTED" value="true" />
|
||||||
|
</component>
|
||||||
|
</project>
|
@ -10,6 +10,12 @@ import torch
|
|||||||
from torch_geometric.data import InMemoryDataset
|
from torch_geometric.data import InMemoryDataset
|
||||||
from torch_geometric.data import Data
|
from torch_geometric.data import Data
|
||||||
from torch.utils.data import Dataset
|
from torch.utils.data import Dataset
|
||||||
|
import re
|
||||||
|
|
||||||
|
|
||||||
|
def save_names(name_list, path):
|
||||||
|
with open(path, 'wb'):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
class CustomShapeNet(InMemoryDataset):
|
class CustomShapeNet(InMemoryDataset):
|
||||||
@ -181,10 +187,8 @@ class ShapeNetPartSegDataset(Dataset):
|
|||||||
|
|
||||||
|
|
||||||
class PredictionShapeNet(InMemoryDataset):
|
class PredictionShapeNet(InMemoryDataset):
|
||||||
categories = {key: val for val, key in enumerate(['Box', 'Cone', 'Cylinder', 'Sphere'])}
|
|
||||||
|
|
||||||
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None,
|
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True):
|
||||||
headers=True, **kwargs):
|
|
||||||
self.has_headers = headers
|
self.has_headers = headers
|
||||||
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
|
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
|
||||||
path = self.processed_paths[0]
|
path = self.processed_paths[0]
|
||||||
@ -226,57 +230,59 @@ class PredictionShapeNet(InMemoryDataset):
|
|||||||
|
|
||||||
def process(self, delimiter=' '):
|
def process(self, delimiter=' '):
|
||||||
|
|
||||||
datasets = defaultdict(list)
|
datasets, filenames = defaultdict(list), []
|
||||||
for idx, setting in enumerate(self.raw_file_names):
|
path_to_clouds = os.path.join(self.raw_dir, self.raw_file_names[0])
|
||||||
path_to_clouds = os.path.join(self.raw_dir, setting)
|
|
||||||
|
|
||||||
if '.headers' in os.listdir(path_to_clouds):
|
if '.headers' in os.listdir(path_to_clouds):
|
||||||
self.has_headers = True
|
self.has_headers = True
|
||||||
elif 'no.headers' in os.listdir(path_to_clouds):
|
elif 'no.headers' in os.listdir(path_to_clouds):
|
||||||
self.has_headers = False
|
self.has_headers = False
|
||||||
else:
|
else:
|
||||||
pass
|
pass
|
||||||
|
|
||||||
for pointcloud in tqdm(os.scandir(path_to_clouds)):
|
for pointcloud in tqdm(os.scandir(path_to_clouds)):
|
||||||
if not os.path.isdir(pointcloud):
|
if not os.path.isdir(pointcloud):
|
||||||
|
continue
|
||||||
|
full_cloud_pattern = '\d+?_pc\.(xyz|dat)'
|
||||||
|
pattern = re.compile(full_cloud_pattern)
|
||||||
|
for file in os.scandir(pointcloud.path):
|
||||||
|
if not pattern.match(file.name):
|
||||||
continue
|
continue
|
||||||
for extention in ['dat', 'xyz']:
|
with open(file, 'r') as f:
|
||||||
file = os.path.join(pointcloud.path, f'pc.{extention}')
|
if self.has_headers:
|
||||||
if not os.path.exists(file):
|
headers = f.__next__()
|
||||||
continue
|
# Check if there are no useable nodes in this file, header says 0.
|
||||||
with open(file, 'r') as f:
|
if not int(headers.rstrip().split(delimiter)[0]):
|
||||||
if self.has_headers:
|
continue
|
||||||
headers = f.__next__()
|
|
||||||
# Check if there are no useable nodes in this file, header says 0.
|
|
||||||
if not int(headers.rstrip().split(delimiter)[0]):
|
|
||||||
continue
|
|
||||||
|
|
||||||
# Iterate over all rows
|
# Iterate over all rows
|
||||||
src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0
|
src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0
|
||||||
for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != '']
|
for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != '']
|
||||||
points = torch.tensor(src, dtype=None).squeeze()
|
points = torch.tensor(src, dtype=None).squeeze()
|
||||||
if not len(points.shape) > 1:
|
if not len(points.shape) > 1:
|
||||||
continue
|
continue
|
||||||
# pos = points[:, :3]
|
# pos = points[:, :3]
|
||||||
# norm = points[:, 3:]
|
# norm = points[:, 3:]
|
||||||
y_fake_all = [-1] * points.shape[0]
|
y_fake_all = [-1] * points.shape[0]
|
||||||
y = torch.as_tensor(y_fake_all, dtype=torch.int)
|
y = torch.as_tensor(y_fake_all, dtype=torch.int)
|
||||||
# points = torch.as_tensor(points, dtype=torch.float)
|
# points = torch.as_tensor(points, dtype=torch.float)
|
||||||
# norm = torch.as_tensor(norm, dtype=torch.float)
|
# norm = torch.as_tensor(norm, dtype=torch.float)
|
||||||
data = Data(y=y, pos=points[:, :3])
|
data = Data(y=y, pos=points[:, :3])
|
||||||
# , points=points, norm=points[:3], )
|
# , points=points, norm=points[:3], )
|
||||||
# ToDo: ANy filter to apply? Then do it here.
|
# ToDo: ANy filter to apply? Then do it here.
|
||||||
if self.pre_filter is not None and not self.pre_filter(data):
|
if self.pre_filter is not None and not self.pre_filter(data):
|
||||||
data = self.pre_filter(data)
|
data = self.pre_filter(data)
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
# ToDo: ANy transformation to apply? Then do it here.
|
# ToDo: ANy transformation to apply? Then do it here.
|
||||||
if self.pre_transform is not None:
|
if self.pre_transform is not None:
|
||||||
data = self.pre_transform(data)
|
data = self.pre_transform(data)
|
||||||
raise NotImplementedError
|
raise NotImplementedError
|
||||||
datasets[setting].append(data)
|
datasets[self.raw_file_names[0]].append(data)
|
||||||
|
filenames.append(file)
|
||||||
|
|
||||||
os.makedirs(self.processed_dir, exist_ok=True)
|
os.makedirs(self.processed_dir, exist_ok=True)
|
||||||
torch.save(self.collate(datasets[setting]), self.processed_paths[idx])
|
torch.save(self.collate(datasets[self.raw_file_names[0]]), self.processed_paths[0])
|
||||||
|
# save_names(filenames)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self):
|
||||||
return f'{self.__class__.__name__}({len(self)})'
|
return f'{self.__class__.__name__}({len(self)})'
|
||||||
@ -287,11 +293,11 @@ class PredictNetPartSegDataset(Dataset):
|
|||||||
Resample raw point cloud to fixed number of points.
|
Resample raw point cloud to fixed number of points.
|
||||||
Map raw label from range [1, N] to [0, N-1].
|
Map raw label from range [1, N] to [0, N-1].
|
||||||
"""
|
"""
|
||||||
def __init__(self, root_dir, train=False, transform=None, npoints=2048, headers=True, collate_per_segment=False):
|
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True):
|
||||||
super(PredictNetPartSegDataset, self).__init__()
|
super(PredictNetPartSegDataset, self).__init__()
|
||||||
self.npoints = npoints
|
self.npoints = npoints
|
||||||
self.dataset = PredictionShapeNet(root=root_dir, train=train, transform=transform,
|
self._num_classes = num_classes
|
||||||
headers=headers, collate_per_segment=collate_per_segment)
|
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers)
|
||||||
|
|
||||||
def __getitem__(self, index):
|
def __getitem__(self, index):
|
||||||
data = self.dataset[index]
|
data = self.dataset[index]
|
||||||
@ -311,11 +317,10 @@ class PredictNetPartSegDataset(Dataset):
|
|||||||
'points': points, # torch.Tensor (n, 3)
|
'points': points, # torch.Tensor (n, 3)
|
||||||
'labels': labels # torch.Tensor (n,)
|
'labels': labels # torch.Tensor (n,)
|
||||||
}
|
}
|
||||||
|
|
||||||
return sample
|
return sample
|
||||||
|
|
||||||
def __len__(self):
|
def __len__(self):
|
||||||
return len(self.dataset)
|
return len(self.dataset)
|
||||||
|
|
||||||
def num_classes(self):
|
def num_classes(self):
|
||||||
return self.dataset.num_classes
|
return self._num_classes
|
||||||
|
BIN
predict/checkpoint/seg_model_custom_24.pth
Normal file
BIN
predict/checkpoint/seg_model_custom_24.pth
Normal file
Binary file not shown.
BIN
predict/checkpoint/seg_model_custom_249.pth
Normal file
BIN
predict/checkpoint/seg_model_custom_249.pth
Normal file
Binary file not shown.
BIN
predict/checkpoint/seg_model_custom_57.pth
Normal file
BIN
predict/checkpoint/seg_model_custom_57.pth
Normal file
Binary file not shown.
BIN
predict/checkpoint/seg_model_custom_7.pth
Normal file
BIN
predict/checkpoint/seg_model_custom_7.pth
Normal file
Binary file not shown.
BIN
predict/checkpoint/seg_model_custom_8.pth
Normal file
BIN
predict/checkpoint/seg_model_custom_8.pth
Normal file
Binary file not shown.
BIN
predict/checkpoint/seg_model_custom_all_20.pth
Normal file
BIN
predict/checkpoint/seg_model_custom_all_20.pth
Normal file
Binary file not shown.
BIN
predict/data/processed/predict.pt
Normal file
BIN
predict/data/processed/predict.pt
Normal file
Binary file not shown.
2048
predict/data/raw/predict/580_9/100_pc.xyz
Normal file
2048
predict/data/raw/predict/580_9/100_pc.xyz
Normal file
File diff suppressed because it is too large
Load Diff
0
predict/data/raw/predict/no.headers
Normal file
0
predict/data/raw/predict/no.headers
Normal file
79
predict/predict.py
Normal file
79
predict/predict.py
Normal file
@ -0,0 +1,79 @@
|
|||||||
|
import sys
|
||||||
|
import os
|
||||||
|
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
|
||||||
|
|
||||||
|
from dataset.shapenet import PredictNetPartSegDataset, ShapeNetPartSegDataset
|
||||||
|
from model.pointnet2_part_seg import PointNet2PartSegmentNet
|
||||||
|
import torch_geometric.transforms as GT
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
import argparse
|
||||||
|
|
||||||
|
##
|
||||||
|
parser = argparse.ArgumentParser()
|
||||||
|
parser.add_argument('--dataset', type=str, default='data', help='dataset path')
|
||||||
|
parser.add_argument('--npoints', type=int, default=2048, help='resample points number')
|
||||||
|
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_custom_249.pth', help='model path')
|
||||||
|
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
|
||||||
|
opt = parser.parse_args()
|
||||||
|
print(opt)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
|
||||||
|
# Load dataset
|
||||||
|
print('Construct dataset ..')
|
||||||
|
test_transform = GT.Compose([GT.NormalizeScale(),])
|
||||||
|
|
||||||
|
test_dataset = PredictNetPartSegDataset(
|
||||||
|
root_dir=opt.dataset,
|
||||||
|
num_classes=4,
|
||||||
|
transform=None,
|
||||||
|
npoints=opt.npoints
|
||||||
|
)
|
||||||
|
num_classes = test_dataset.num_classes()
|
||||||
|
|
||||||
|
print('test dataset size: ', len(test_dataset))
|
||||||
|
|
||||||
|
# Load model
|
||||||
|
print('Construct model ..')
|
||||||
|
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
|
||||||
|
dtype = torch.float
|
||||||
|
|
||||||
|
# net = PointNetPartSegmentNet(num_classes)
|
||||||
|
net = PointNet2PartSegmentNet(num_classes)
|
||||||
|
|
||||||
|
net.load_state_dict(torch.load(opt.model, map_location=device.type))
|
||||||
|
net = net.to(device, dtype)
|
||||||
|
net.eval()
|
||||||
|
|
||||||
|
##
|
||||||
|
def eval_sample(net, sample):
|
||||||
|
'''
|
||||||
|
sample: { 'points': tensor(n, 3), 'labels': tensor(n,) }
|
||||||
|
return: (pred_label, gt_label) with labels shape (n,)
|
||||||
|
'''
|
||||||
|
net.eval()
|
||||||
|
with torch.no_grad():
|
||||||
|
# points: (n, 3)
|
||||||
|
points, gt_label = sample['points'], sample['labels']
|
||||||
|
n = points.shape[0]
|
||||||
|
|
||||||
|
points = points.view(1, n, 3) # make a batch
|
||||||
|
points = points.transpose(1, 2).contiguous()
|
||||||
|
points = points.to(device, dtype)
|
||||||
|
|
||||||
|
pred = net(points) # (batch_size, n, num_classes)
|
||||||
|
pred_label = pred.max(2)[1]
|
||||||
|
pred_label = pred_label.view(-1).cpu() # (n,)
|
||||||
|
|
||||||
|
assert pred_label.shape == gt_label.shape
|
||||||
|
return (pred_label, gt_label)
|
||||||
|
|
||||||
|
# Iterate over all the samples
|
||||||
|
for sample in test_dataset:
|
||||||
|
print('Eval test sample ..')
|
||||||
|
pred_label, gt_label = eval_sample(net, sample)
|
||||||
|
print('Eval done ..')
|
||||||
|
|
||||||
|
pred_labels = pred_label.numpy()
|
||||||
|
print(pred_labels)
|
Loading…
x
Reference in New Issue
Block a user