Final *hopefully* adjustments

This commit is contained in:
Si11ium
2019-08-01 21:24:31 +02:00
parent ff117ea2f2
commit 22ea950d85
12 changed files with 2191 additions and 53 deletions

View File

@ -10,6 +10,12 @@ import torch
from torch_geometric.data import InMemoryDataset
from torch_geometric.data import Data
from torch.utils.data import Dataset
import re
def save_names(name_list, path):
with open(path, 'wb'):
pass
class CustomShapeNet(InMemoryDataset):
@ -181,10 +187,8 @@ class ShapeNetPartSegDataset(Dataset):
class PredictionShapeNet(InMemoryDataset):
categories = {key: val for val, key in enumerate(['Box', 'Cone', 'Cylinder', 'Sphere'])}
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None,
headers=True, **kwargs):
def __init__(self, root, transform=None, pre_filter=None, pre_transform=None, headers=True):
self.has_headers = headers
super(PredictionShapeNet, self).__init__(root, transform, pre_transform, pre_filter)
path = self.processed_paths[0]
@ -226,57 +230,59 @@ class PredictionShapeNet(InMemoryDataset):
def process(self, delimiter=' '):
datasets = defaultdict(list)
for idx, setting in enumerate(self.raw_file_names):
path_to_clouds = os.path.join(self.raw_dir, setting)
datasets, filenames = defaultdict(list), []
path_to_clouds = os.path.join(self.raw_dir, self.raw_file_names[0])
if '.headers' in os.listdir(path_to_clouds):
self.has_headers = True
elif 'no.headers' in os.listdir(path_to_clouds):
self.has_headers = False
else:
pass
if '.headers' in os.listdir(path_to_clouds):
self.has_headers = True
elif 'no.headers' in os.listdir(path_to_clouds):
self.has_headers = False
else:
pass
for pointcloud in tqdm(os.scandir(path_to_clouds)):
if not os.path.isdir(pointcloud):
for pointcloud in tqdm(os.scandir(path_to_clouds)):
if not os.path.isdir(pointcloud):
continue
full_cloud_pattern = '\d+?_pc\.(xyz|dat)'
pattern = re.compile(full_cloud_pattern)
for file in os.scandir(pointcloud.path):
if not pattern.match(file.name):
continue
for extention in ['dat', 'xyz']:
file = os.path.join(pointcloud.path, f'pc.{extention}')
if not os.path.exists(file):
continue
with open(file, 'r') as f:
if self.has_headers:
headers = f.__next__()
# Check if there are no useable nodes in this file, header says 0.
if not int(headers.rstrip().split(delimiter)[0]):
continue
with open(file, 'r') as f:
if self.has_headers:
headers = f.__next__()
# Check if there are no useable nodes in this file, header says 0.
if not int(headers.rstrip().split(delimiter)[0]):
continue
# Iterate over all rows
src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0
for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != '']
points = torch.tensor(src, dtype=None).squeeze()
if not len(points.shape) > 1:
continue
# pos = points[:, :3]
# norm = points[:, 3:]
y_fake_all = [-1] * points.shape[0]
y = torch.as_tensor(y_fake_all, dtype=torch.int)
# points = torch.as_tensor(points, dtype=torch.float)
# norm = torch.as_tensor(norm, dtype=torch.float)
data = Data(y=y, pos=points[:, :3])
# , points=points, norm=points[:3], )
# ToDo: ANy filter to apply? Then do it here.
if self.pre_filter is not None and not self.pre_filter(data):
data = self.pre_filter(data)
raise NotImplementedError
# ToDo: ANy transformation to apply? Then do it here.
if self.pre_transform is not None:
data = self.pre_transform(data)
raise NotImplementedError
datasets[setting].append(data)
# Iterate over all rows
src = [[float(x) if x not in ['-nan(ind)', 'nan(ind)'] else 0
for x in line.rstrip().split(delimiter)[None:None]] for line in f if line != '']
points = torch.tensor(src, dtype=None).squeeze()
if not len(points.shape) > 1:
continue
# pos = points[:, :3]
# norm = points[:, 3:]
y_fake_all = [-1] * points.shape[0]
y = torch.as_tensor(y_fake_all, dtype=torch.int)
# points = torch.as_tensor(points, dtype=torch.float)
# norm = torch.as_tensor(norm, dtype=torch.float)
data = Data(y=y, pos=points[:, :3])
# , points=points, norm=points[:3], )
# ToDo: ANy filter to apply? Then do it here.
if self.pre_filter is not None and not self.pre_filter(data):
data = self.pre_filter(data)
raise NotImplementedError
# ToDo: ANy transformation to apply? Then do it here.
if self.pre_transform is not None:
data = self.pre_transform(data)
raise NotImplementedError
datasets[self.raw_file_names[0]].append(data)
filenames.append(file)
os.makedirs(self.processed_dir, exist_ok=True)
torch.save(self.collate(datasets[setting]), self.processed_paths[idx])
torch.save(self.collate(datasets[self.raw_file_names[0]]), self.processed_paths[0])
# save_names(filenames)
def __repr__(self):
return f'{self.__class__.__name__}({len(self)})'
@ -287,11 +293,11 @@ class PredictNetPartSegDataset(Dataset):
Resample raw point cloud to fixed number of points.
Map raw label from range [1, N] to [0, N-1].
"""
def __init__(self, root_dir, train=False, transform=None, npoints=2048, headers=True, collate_per_segment=False):
def __init__(self, root_dir, num_classes, transform=None, npoints=2048, headers=True):
super(PredictNetPartSegDataset, self).__init__()
self.npoints = npoints
self.dataset = PredictionShapeNet(root=root_dir, train=train, transform=transform,
headers=headers, collate_per_segment=collate_per_segment)
self._num_classes = num_classes
self.dataset = PredictionShapeNet(root=root_dir, transform=transform, headers=headers)
def __getitem__(self, index):
data = self.dataset[index]
@ -311,11 +317,10 @@ class PredictNetPartSegDataset(Dataset):
'points': points, # torch.Tensor (n, 3)
'labels': labels # torch.Tensor (n,)
}
return sample
def __len__(self):
return len(self.dataset)
def num_classes(self):
return self.dataset.num_classes
return self._num_classes