New File Types, automatic detection and header parameters
This commit is contained in:
8
main.py
8
main.py
@ -7,6 +7,7 @@ https://github.com/dragonbook/pointnet2-pytorch/blob/master/main.py
|
||||
|
||||
import os
|
||||
import sys
|
||||
from distutils.util import strtobool
|
||||
import random
|
||||
import numpy as np
|
||||
import argparse
|
||||
@ -35,12 +36,15 @@ parser.add_argument('--outf', type=str, default='checkpoint', help='output folde
|
||||
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
|
||||
parser.add_argument('--test_per_batches', type=int, default=1000, help='run a test batch per training batches number')
|
||||
parser.add_argument('--num_workers', type=int, default=4, help='number of data loading workers')
|
||||
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
|
||||
|
||||
|
||||
opt = parser.parse_args()
|
||||
print(opt)
|
||||
|
||||
# Random seed
|
||||
opt.manual_seed = 123
|
||||
opt.headers = bool(opt.headers)
|
||||
print('Random seed: ', opt.manual_seed)
|
||||
random.seed(opt.manual_seed)
|
||||
np.random.seed(opt.manual_seed)
|
||||
@ -64,10 +68,10 @@ if __name__ == '__main__':
|
||||
train_transform = GT.Compose([GT.NormalizeScale(), RotTransform, TransTransform])
|
||||
test_transform = GT.Compose([GT.NormalizeScale(), ])
|
||||
|
||||
dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=True, transform=train_transform, npoints=opt.npoints)
|
||||
dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=True, transform=train_transform, npoints=opt.npoints, headers=opt.headers)
|
||||
dataLoader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
|
||||
|
||||
test_dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=False, transform=test_transform, npoints=opt.npoints)
|
||||
test_dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=False, transform=test_transform, npoints=opt.npoints, headers=opt.headers)
|
||||
test_dataLoader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
|
||||
|
||||
num_classes = dataset.num_classes()
|
||||
|
Reference in New Issue
Block a user