New File Types, automatic detection and header parameters

This commit is contained in:
Si11ium
2019-07-30 15:11:11 +02:00
parent 4e38de9a5b
commit 0b9d03a25d
2 changed files with 26 additions and 14 deletions

View File

@ -7,6 +7,7 @@ https://github.com/dragonbook/pointnet2-pytorch/blob/master/main.py
import os
import sys
from distutils.util import strtobool
import random
import numpy as np
import argparse
@ -35,12 +36,15 @@ parser.add_argument('--outf', type=str, default='checkpoint', help='output folde
parser.add_argument('--batch_size', type=int, default=8, help='input batch size')
parser.add_argument('--test_per_batches', type=int, default=1000, help='run a test batch per training batches number')
parser.add_argument('--num_workers', type=int, default=4, help='number of data loading workers')
parser.add_argument('--headers', type=strtobool, default=True, help='if raw files come with headers')
opt = parser.parse_args()
print(opt)
# Random seed
opt.manual_seed = 123
opt.headers = bool(opt.headers)
print('Random seed: ', opt.manual_seed)
random.seed(opt.manual_seed)
np.random.seed(opt.manual_seed)
@ -64,10 +68,10 @@ if __name__ == '__main__':
train_transform = GT.Compose([GT.NormalizeScale(), RotTransform, TransTransform])
test_transform = GT.Compose([GT.NormalizeScale(), ])
dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=True, transform=train_transform, npoints=opt.npoints)
dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=True, transform=train_transform, npoints=opt.npoints, headers=opt.headers)
dataLoader = DataLoader(dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
test_dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=False, transform=test_transform, npoints=opt.npoints)
test_dataset = ShapeNetPartSegDataset(root_dir=opt.dataset, train=False, transform=test_transform, npoints=opt.npoints, headers=opt.headers)
test_dataLoader = DataLoader(test_dataset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.num_workers)
num_classes = dataset.num_classes()