initial commit

This commit is contained in:
Si11ium
2019-07-30 07:44:45 +02:00
commit 0159363642
12 changed files with 1060 additions and 0 deletions

133
vis/show_seg_res.py Normal file
View File

@ -0,0 +1,133 @@
# Warning: import open3d may lead crash, try to to import open3d first here
from view import view_points_labels
import sys
import os
sys.path.append(os.path.dirname(os.path.abspath(__file__)) + '/../') # add project root directory
from dataset.shapenet import ShapeNetPartSegDataset
from model.pointnet2_part_seg import PointNet2PartSegmentNet
import torch_geometric.transforms as GT
import torch
import numpy as np
import argparse
##
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', type=str, default='data', help='dataset path')
parser.add_argument('--npoints', type=int, default=50, help='resample points number')
parser.add_argument('--model', type=str, default='./checkpoint/seg_model_Airplane_24.pth', help='model path')
parser.add_argument('--sample_idx', type=int, default=0, help='select a sample to segment and view result')
opt = parser.parse_args()
print(opt)
if __name__ == '__main__':
## Load dataset
print('Construct dataset ..')
test_transform = GT.Compose([GT.NormalizeScale(),])
test_dataset = ShapeNetPartSegDataset(
root_dir=opt.dataset,
train=False,
transform=test_transform,
npoints=opt.npoints
)
num_classes = test_dataset.num_classes()
print('test dataset size: ', len(test_dataset))
print('num_classes: ', num_classes)
# Load model
print('Construct model ..')
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
dtype = torch.float
# net = PointNetPartSegmentNet(num_classes)
net = PointNet2PartSegmentNet(num_classes)
net.load_state_dict(torch.load(opt.model))
net = net.to(device, dtype)
net.eval()
##
def eval_sample(net, sample):
'''
sample: { 'points': tensor(n, 3), 'labels': tensor(n,) }
return: (pred_label, gt_label) with labels shape (n,)
'''
net.eval()
with torch.no_grad():
# points: (n, 3)
points, gt_label = sample['points'], sample['labels']
n = points.shape[0]
points = points.view(1, n, 3) # make a batch
points = points.transpose(1, 2).contiguous()
points = points.to(device, dtype)
pred = net(points) # (batch_size, n, num_classes)
pred_label = pred.max(2)[1]
pred_label = pred_label.view(-1).cpu() # (n,)
assert pred_label.shape == gt_label.shape
return (pred_label, gt_label)
def compute_mIoU(pred_label, gt_label):
minl, maxl = np.min(gt_label), np.max(gt_label)
ious = []
for l in range(minl, maxl+1):
I = np.sum(np.logical_and(pred_label == l, gt_label == l))
U = np.sum(np.logical_or(pred_label == l, gt_label == l))
if U == 0: iou = 1
else: iou = float(I) / U
ious.append(iou)
return np.mean(ious)
def label_diff(pred_label, gt_label):
'''
Assign 1 if different label, or 0 if same label
'''
diff = pred_label - gt_label
diff_mask = (diff != 0)
diff_label = np.zeros((pred_label.shape[0]), dtype=np.int32)
diff_label[diff_mask] = 1
return diff_label
# Get one sample and eval
sample = test_dataset[opt.sample_idx]
print('Eval test sample ..')
pred_label, gt_label = eval_sample(net, sample)
print('Eval done ..')
# Get sample result
print('Compute mIoU ..')
points = sample['points'].numpy()
pred_labels = pred_label.numpy()
gt_labels = gt_label.numpy()
diff_labels = label_diff(pred_labels, gt_labels)
print('mIoU: ', compute_mIoU(pred_labels, gt_labels))
# View result
# print('View gt labels ..')
# view_points_labels(points, gt_labels)
# print('View diff labels ..')
# view_points_labels(points, diff_labels)
print('View pred labels ..')
view_points_labels(points, pred_labels)

63
vis/view.py Normal file
View File

@ -0,0 +1,63 @@
import open3d as o3d
import numpy as np
def mini_color_table(index, norm=True):
colors = [
[0.5000, 0.5400, 0.5300], [0.8900, 0.1500, 0.2100], [0.6400, 0.5800, 0.5000],
[1.0000, 0.3800, 0.0100], [1.0000, 0.6600, 0.1400], [0.4980, 1.0000, 0.0000],
[0.4980, 1.0000, 0.8314], [0.9412, 0.9725, 1.0000], [0.5412, 0.1686, 0.8863],
[0.5765, 0.4392, 0.8588], [0.3600, 0.1400, 0.4300], [0.5600, 0.3700, 0.6000],
]
assert index >= 0 and index < len(colors)
color = colors[index]
if not norm:
color[0] *= 255
color[1] *= 255
color[2] *= 255
return color
def view_points(points, colors=None):
'''
points: np.ndarray with shape (n, 3)
colors: [r, g, b] or np.array with shape (n, 3)
'''
cloud = o3d.PointCloud()
cloud.points = o3d.Vector3dVector(points)
if colors is not None:
if isinstance(colors, np.ndarray):
cloud.colors = o3d.Vector3dVector(colors)
else: cloud.paint_uniform_color(colors)
o3d.draw_geometries([cloud])
def label2color(labels):
'''
labels: np.ndarray with shape (n, )
colors(return): np.ndarray with shape (n, 3)
'''
num = labels.shape[0]
colors = np.zeros((num, 3))
minl, maxl = np.min(labels), np.max(labels)
for l in range(minl, maxl + 1):
colors[labels==l, :] = mini_color_table(l)
return colors
def view_points_labels(points, labels):
'''
Assign points with colors by labels and view colored points.
points: np.ndarray with shape (n, 3)
labels: np.ndarray with shape (n, 1), dtype=np.int32
'''
assert points.shape[0] == labels.shape[0]
colors = label2color(labels)
view_points(points, colors)