392 lines
20 KiB
Python
392 lines
20 KiB
Python
import sys
|
|
from pathlib import Path
|
|
from matplotlib import pyplot as plt
|
|
import numpy as np
|
|
|
|
try:
|
|
# noinspection PyUnboundLocalVariable
|
|
if __package__ is None:
|
|
DIR = Path(__file__).resolve().parent
|
|
sys.path.insert(0, str(DIR.parent))
|
|
__package__ = DIR.name
|
|
else:
|
|
DIR = None
|
|
except NameError:
|
|
DIR = None
|
|
pass
|
|
|
|
import time
|
|
|
|
|
|
import simplejson
|
|
from stable_baselines3.common.vec_env import SubprocVecEnv
|
|
|
|
from environments import helpers as h
|
|
from environments.factory.factory_dirt import DirtProperties, DirtFactory
|
|
from environments.factory.factory_dirt_item import DirtItemFactory
|
|
from environments.factory.factory_item import ItemProperties, ItemFactory
|
|
from environments.logging.monitor import MonitorCallback
|
|
from environments.utility_classes import MovementProperties
|
|
import pickle
|
|
from plotting.compare_runs import compare_seed_runs, compare_model_runs, compare_all_parameter_runs
|
|
import pandas as pd
|
|
import seaborn as sns
|
|
|
|
# Define a global studi save path
|
|
start_time = 163519000 # int(time.time())
|
|
study_root_path = Path(__file__).parent.parent / 'study_out' / f'{Path(__file__).stem}_{start_time}'
|
|
|
|
"""
|
|
In this studie, we want to explore the macro behaviour of multi agents which are trained on the same task,
|
|
but never saw each other in training.
|
|
Those agents learned
|
|
|
|
|
|
We start with training a single policy on a single task (dirt cleanup / item pickup).
|
|
Then multiple agent equipped with the same policy are deployed in the same environment.
|
|
|
|
There are further distinctions to be made:
|
|
|
|
1. No Observation - ['no_obs']:
|
|
- Agent do not see each other but their consequences of their combined actions
|
|
- Agents can collide
|
|
|
|
2. Observation in seperate slice - [['seperate_0'], ['seperate_1'], ['seperate_N']]:
|
|
- Agents see other entitys on a seperate slice
|
|
- This slice has been filled with $0 | 1 | \mathbb{N}(0, 1)$
|
|
-- Depending ob the fill value, agents will react diffently
|
|
-> TODO: Test this!
|
|
|
|
3. Observation in level slice - ['in_lvl_obs']:
|
|
- This tells the agent to treat other agents as obstacle.
|
|
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
|
- We are out of distribution.
|
|
|
|
4. Obseration (similiar to camera read out) ['in_lvl_0.5', 'in_lvl_n']
|
|
- This tells the agent to treat other agents as obstacle, but "sees" them encoded as a different value.
|
|
- However, the state space is altered since moving obstacles are not part the original agent observation.
|
|
- We are out of distribution.
|
|
"""
|
|
|
|
|
|
def policy_model_kwargs():
|
|
return dict(ent_coef=0.05)
|
|
|
|
|
|
def dqn_model_kwargs():
|
|
return dict(buffer_size=50000,
|
|
learning_starts=64,
|
|
batch_size=64,
|
|
target_update_interval=5000,
|
|
exploration_fraction=0.25,
|
|
exploration_final_eps=0.025
|
|
)
|
|
|
|
|
|
def encapsule_env_factory(env_fctry, env_kwrgs):
|
|
|
|
def _init():
|
|
with env_fctry(**env_kwrgs) as init_env:
|
|
return init_env
|
|
|
|
return _init
|
|
|
|
|
|
if __name__ == '__main__':
|
|
train_steps = 8e5
|
|
|
|
# Define Global Env Parameters
|
|
# Define properties object parameters
|
|
move_props = MovementProperties(allow_diagonal_movement=True,
|
|
allow_square_movement=True,
|
|
allow_no_op=False)
|
|
dirt_props = DirtProperties(initial_dirt_ratio=0.35, initial_dirt_spawn_r_var=0.1,
|
|
clean_amount=0.34,
|
|
max_spawn_amount=0.1, max_global_amount=20,
|
|
max_local_amount=1, spawn_frequency=0, max_spawn_ratio=0.05,
|
|
dirt_smear_amount=0.0, agent_can_interact=True)
|
|
item_props = ItemProperties(n_items=10, agent_can_interact=True,
|
|
spawn_frequency=30, n_drop_off_locations=2,
|
|
max_agent_inventory_capacity=15)
|
|
factory_kwargs = dict(n_agents=1,
|
|
pomdp_r=2, max_steps=400, parse_doors=True,
|
|
level_name='rooms', frames_to_stack=3,
|
|
omit_agent_in_obs=True, combin_agent_obs=True, record_episodes=False,
|
|
cast_shadows=True, doors_have_area=False, verbose=False,
|
|
movement_properties=move_props
|
|
)
|
|
|
|
# Bundle both environments with global kwargs and parameters
|
|
env_map = {'dirt': (DirtFactory, dict(dirt_properties=dirt_props, **factory_kwargs)),
|
|
'item': (ItemFactory, dict(item_properties=item_props, **factory_kwargs)),
|
|
'itemdirt': (DirtItemFactory, dict(dirt_properties=dirt_props, item_properties=item_props,
|
|
**factory_kwargs))}
|
|
env_names = list(env_map.keys())
|
|
|
|
# Define parameter versions according with #1,2[1,0,N],3
|
|
observation_modes = {
|
|
# Fill-value = 0
|
|
# DEACTIVATED 'seperate_0': dict(additional_env_kwargs=dict(additional_agent_placeholder=0)),
|
|
# Fill-value = 1
|
|
# DEACTIVATED 'seperate_1': dict(additional_env_kwargs=dict(additional_agent_placeholder=1)),
|
|
# Fill-value = N(0, 1)
|
|
'seperate_N': dict(additional_env_kwargs=dict(additional_agent_placeholder='N')),
|
|
# Further Adjustments are done post-training
|
|
'in_lvl_obs': dict(post_training_kwargs=dict(other_agent_obs='in_lvl')),
|
|
# No further adjustment needed
|
|
'no_obs': {}
|
|
}
|
|
|
|
# Train starts here ############################################################
|
|
# Build Major Loop parameters, parameter versions, Env Classes and models
|
|
if True:
|
|
for observation_mode in observation_modes.keys():
|
|
for env_name in env_names:
|
|
for model_cls in [h.MODEL_MAP['A2C'], h.MODEL_MAP['DQN']]:
|
|
# Create an identifier, which is unique for every combination and easy to read in filesystem
|
|
identifier = f'{model_cls.__name__}_{start_time}'
|
|
# Train each combination per seed
|
|
combination_path = study_root_path / observation_mode / env_name / identifier
|
|
env_class, env_kwargs = env_map[env_name]
|
|
# Retrieve and set the observation mode specific env parameters
|
|
if observation_mode_kwargs := observation_modes.get(observation_mode, None):
|
|
if additional_env_kwargs := observation_mode_kwargs.get("additional_env_kwargs", None):
|
|
env_kwargs.update(additional_env_kwargs)
|
|
for seed in range(5):
|
|
env_kwargs.update(env_seed=seed)
|
|
# Output folder
|
|
seed_path = combination_path / f'{str(seed)}_{identifier}'
|
|
if (seed_path / 'monitor.pick').exists():
|
|
continue
|
|
seed_path.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Monitor Init
|
|
callbacks = [MonitorCallback(seed_path / 'monitor.pick')]
|
|
|
|
# Env Init & Model kwargs definition
|
|
if model_cls.__name__ in ["PPO", "A2C"]:
|
|
# env_factory = env_class(**env_kwargs)
|
|
env_factory = SubprocVecEnv([encapsule_env_factory(env_class, env_kwargs)
|
|
for _ in range(6)], start_method="spawn")
|
|
model_kwargs = policy_model_kwargs()
|
|
|
|
elif model_cls.__name__ in ["RegDQN", "DQN", "QRDQN"]:
|
|
with env_class(**env_kwargs) as env_factory:
|
|
model_kwargs = dqn_model_kwargs()
|
|
|
|
else:
|
|
raise NameError(f'The model "{model_cls.__name__}" has the wrong name.')
|
|
|
|
param_path = seed_path / f'env_params.json'
|
|
try:
|
|
env_factory.env_method('save_params', param_path)
|
|
except AttributeError:
|
|
env_factory.save_params(param_path)
|
|
|
|
# Model Init
|
|
model = model_cls("MlpPolicy", env_factory,
|
|
verbose=1, seed=seed, device='cpu',
|
|
**model_kwargs)
|
|
|
|
# Model train
|
|
model.learn(total_timesteps=int(train_steps), callback=callbacks)
|
|
|
|
# Model save
|
|
save_path = seed_path / f'model.zip'
|
|
model.save(save_path)
|
|
|
|
# Better be save then sorry: Clean up!
|
|
del env_factory, model
|
|
import gc
|
|
gc.collect()
|
|
|
|
# Compare performance runs, for each seed within a model
|
|
compare_seed_runs(combination_path, use_tex=False)
|
|
# Better be save then sorry: Clean up!
|
|
try:
|
|
del env_kwargs
|
|
del model_kwargs
|
|
import gc
|
|
gc.collect()
|
|
except NameError:
|
|
pass
|
|
|
|
# Compare performance runs, for each model
|
|
# FIXME: Check THIS!!!!
|
|
compare_model_runs(study_root_path / observation_mode / env_name, f'{start_time}', 'step_reward',
|
|
use_tex=False)
|
|
pass
|
|
pass
|
|
pass
|
|
pass
|
|
# Train ends here ############################################################
|
|
|
|
# Evaluation starts here #####################################################
|
|
# First Iterate over every model and monitor "as trained"
|
|
baseline_monitor_file = 'e_1_baseline_monitor.pick'
|
|
if True:
|
|
render = False
|
|
for observation_mode in observation_modes:
|
|
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
|
# For trained policy in study_root_path / identifier
|
|
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
|
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
|
# Iteration
|
|
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
|
# retrieve model class
|
|
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
|
# Load both agents
|
|
model = model_cls.load(seed_path / 'model.zip')
|
|
# Load old env kwargs
|
|
with next(seed_path.glob('*.json')).open('r') as f:
|
|
env_kwargs = simplejson.load(f)
|
|
# Monitor Init
|
|
with MonitorCallback(filepath=seed_path / baseline_monitor_file) as monitor:
|
|
# Init Env
|
|
with env_map[env_path.name][0](**env_kwargs) as env_factory:
|
|
# Evaluation Loop for i in range(n Episodes)
|
|
for episode in range(100):
|
|
env_state = env_factory.reset()
|
|
rew, done_bool = 0, False
|
|
while not done_bool:
|
|
action = model.predict(env_state, deterministic=True)[0]
|
|
env_state, step_r, done_bool, info_obj = env_factory.step(action)
|
|
monitor.read_info(0, info_obj)
|
|
rew += step_r
|
|
if render:
|
|
env_factory.render()
|
|
if done_bool:
|
|
monitor.read_done(0, done_bool)
|
|
break
|
|
print(f'Factory run {episode} done, reward is:\n {rew}')
|
|
# Eval monitor outputs are automatically stored by the monitor object
|
|
del model, env_kwargs, env_factory
|
|
import gc
|
|
|
|
gc.collect()
|
|
|
|
# Then iterate over every model and monitor "ood behavior" - "is it ood?"
|
|
n_agents = 4
|
|
ood_monitor_file = f'e_1_monitor_{n_agents}_agents.pick'
|
|
|
|
if True:
|
|
for observation_mode in observation_modes:
|
|
obs_mode_path = next(x for x in study_root_path.iterdir() if x.is_dir() and x.name == observation_mode)
|
|
# For trained policy in study_root_path / identifier
|
|
for env_path in [x for x in obs_mode_path.iterdir() if x.is_dir()]:
|
|
for policy_path in [x for x in env_path.iterdir() if x. is_dir()]:
|
|
# FIXME: Pick random seed or iterate over available seeds
|
|
# First seed path version
|
|
# seed_path = next((y for y in policy_path.iterdir() if y.is_dir()))
|
|
# Iteration
|
|
for seed_path in (y for y in policy_path.iterdir() if y.is_dir()):
|
|
if (seed_path / ood_monitor_file).exists():
|
|
continue
|
|
# retrieve model class
|
|
for model_cls in (val for key, val in h.MODEL_MAP.items() if key in policy_path.name):
|
|
# Load both agents
|
|
models = [model_cls.load(seed_path / 'model.zip') for _ in range(n_agents)]
|
|
# Load old env kwargs
|
|
with next(seed_path.glob('*.json')).open('r') as f:
|
|
env_kwargs = simplejson.load(f)
|
|
env_kwargs.update(
|
|
n_agents=n_agents, additional_agent_placeholder=None,
|
|
**observation_modes[observation_mode].get('post_training_env_kwargs', {}))
|
|
|
|
# Monitor Init
|
|
with MonitorCallback(filepath=seed_path / ood_monitor_file) as monitor:
|
|
# Init Env
|
|
with env_map[env_path.name][0](**env_kwargs) as env_factory:
|
|
# Evaluation Loop for i in range(n Episodes)
|
|
for episode in range(50):
|
|
env_state = env_factory.reset()
|
|
rew, done_bool = 0, False
|
|
while not done_bool:
|
|
actions = [model.predict(
|
|
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
|
|
deterministic=False)[0] for j, model in enumerate(models)]
|
|
env_state, step_r, done_bool, info_obj = env_factory.step(actions)
|
|
monitor.read_info(0, info_obj)
|
|
rew += step_r
|
|
if done_bool:
|
|
monitor.read_done(0, done_bool)
|
|
break
|
|
print(f'Factory run {episode} done, reward is:\n {rew}')
|
|
# Eval monitor outputs are automatically stored by the monitor object
|
|
del models, env_kwargs, env_factory
|
|
import gc
|
|
|
|
gc.collect()
|
|
|
|
# Plotting
|
|
if True:
|
|
# TODO: Plotting
|
|
|
|
for observation_folder in (x for x in study_root_path.iterdir() if x.is_dir()):
|
|
df_list = list()
|
|
for env_folder in (x for x in observation_folder.iterdir() if x.is_dir()):
|
|
for model_folder in (x for x in env_folder.iterdir() if x.is_dir()):
|
|
# Gather per seed results in this list
|
|
|
|
for seed_folder in (x for x in model_folder.iterdir() if x.is_dir()):
|
|
for monitor_file in [baseline_monitor_file, ood_monitor_file]:
|
|
|
|
with (seed_folder / monitor_file).open('rb') as f:
|
|
monitor_df = pickle.load(f)
|
|
|
|
monitor_df = monitor_df.fillna(0)
|
|
monitor_df['seed'] = int(seed_folder.name.split('_')[0])
|
|
monitor_df['monitor'] = monitor_file.split('.')[0]
|
|
monitor_df['monitor'] = monitor_df['monitor'].astype(str)
|
|
monitor_df['env'] = env_folder.name
|
|
|
|
monitor_df['obs_mode'] = observation_folder.name
|
|
monitor_df['obs_mode'] = monitor_df['obs_mode'].astype(str)
|
|
monitor_df['model'] = model_folder.name.split('_')[0]
|
|
|
|
df_list.append(monitor_df)
|
|
|
|
id_cols = ['monitor', 'env', 'obs_mode', 'model']
|
|
|
|
df = pd.concat(df_list, ignore_index=True)
|
|
df = df.fillna(0)
|
|
|
|
for id_col in id_cols:
|
|
df[id_col] = df[id_col].astype(str)
|
|
|
|
if True:
|
|
# df['fail_sum'] = df.loc[:, df.columns.str.contains("failed")].sum(1)
|
|
df['pick_up'] = df.loc[:, df.columns.str.contains("]_item_pickup")].sum(1)
|
|
df['drop_off'] = df.loc[:, df.columns.str.contains("]_item_dropoff")].sum(1)
|
|
df['failed_item_action'] = df.loc[:, df.columns.str.contains("]_failed_item_action")].sum(1)
|
|
df['failed_cleanup'] = df.loc[:, df.columns.str.contains("]_failed_dirt_cleanup")].sum(1)
|
|
df['coll_lvl'] = df.loc[:, df.columns.str.contains("]_vs_LEVEL")].sum(1)
|
|
df['coll_agent'] = df.loc[:, df.columns.str.contains("]_vs_Agent")].sum(1) / 2
|
|
# df['collisions'] = df['coll_lvl'] + df['coll_agent']
|
|
|
|
value_vars = ['pick_up', 'drop_off', 'failed_item_action', 'failed_cleanup',
|
|
'coll_lvl', 'coll_agent', 'dirt_cleaned']
|
|
|
|
df_grouped = df.groupby(id_cols + ['seed']
|
|
).agg({key: 'sum' if "Agent" in key else 'mean' for key in df.columns
|
|
if key not in (id_cols + ['seed'])})
|
|
df_melted = df_grouped.reset_index().melt(id_vars=id_cols,
|
|
value_vars=value_vars, # 'step_reward',
|
|
var_name="Measurement",
|
|
value_name="Score")
|
|
# df_melted["Measurements"] = df_melted["Measurement"] + " " + df_melted["monitor"]
|
|
|
|
# Plotting
|
|
fig, ax = plt.subplots(figsize=(11.7, 8.27))
|
|
|
|
c = sns.catplot(data=df_melted[df_melted['obs_mode'] == observation_folder.name],
|
|
x='Measurement', hue='monitor', row='model', col='env', y='Score',
|
|
sharey=False, kind="box", height=4, aspect=.7, legend_out=True,
|
|
showfliers=False)
|
|
c.set_xticklabels(rotation=65, horizontalalignment='right')
|
|
c.fig.subplots_adjust(top=0.9) # adjust the Figure in rp
|
|
c.fig.suptitle(f"Cat plot for {observation_folder.name}")
|
|
plt.tight_layout(pad=2)
|
|
plt.savefig(study_root_path / f'results_{n_agents}_agents_{observation_folder.name}.png')
|
|
pass
|