87 lines
3.3 KiB
Python

import numpy as np
from environments.helpers import Constants as c
mult_array = np.asarray([
[1, 0, 0, -1, -1, 0, 0, 1],
[0, 1, -1, 0, 0, -1, 1, 0],
[0, 1, 1, 0, 0, -1, -1, 0],
[1, 0, 0, 1, -1, 0, 0, -1]
])
class Map(object):
# Multipliers for transforming coordinates to other octants:
def __init__(self, map_array: np.typing.ArrayLike, diamond_slope: float = 0.9):
self.data = map_array
self.width, self.height = map_array.shape
self.light = np.full_like(self.data, c.FREE_CELL.value)
self.flag = c.FREE_CELL.value
self.d_slope = diamond_slope
def blocked(self, x, y):
return (x < 0 or y < 0
or x >= self.width or y >= self.height
or self.data[x, y] == c.OCCUPIED_CELL.value)
def lit(self, x, y):
return self.light[x, y] == self.flag
def set_lit(self, x, y):
if 0 <= x < self.width and 0 <= y < self.height:
self.light[x, y] = self.flag
def _cast_light(self, cx, cy, row, start, end, radius, xx, xy, yx, yy, id):
"Recursive lightcasting function"
if start < end:
return
radius_squared = radius*radius
new_start = None
for j in range(row, radius+1):
dx, dy = -j-1, -j
blocked = False
while dx <= 0:
dx += 1
# Translate the dx, dy coordinates into map coordinates:
X, Y = cx + dx * xx + dy * xy, cy + dx * yx + dy * yy
# l_slope and r_slope store the slopes of the left and right
# extremities of the square we're considering:
l_slope, r_slope = (dx-self.d_slope)/(dy+self.d_slope), (dx+self.d_slope)/(dy-self.d_slope)
if start < r_slope:
continue
elif end > l_slope:
break
else:
# Our light beam is touching this square; light it:
if dx*dx + dy*dy < radius_squared:
self.set_lit(X, Y)
if blocked:
# we're scanning a row of blocked squares:
if self.blocked(X, Y):
new_start = r_slope
continue
else:
blocked = False
start = new_start
else:
if self.blocked(X, Y) and j < radius:
# This is a blocking square, start a child scan:
blocked = True
self._cast_light(cx, cy, j+1, start, l_slope,
radius, xx, xy, yx, yy, id+1)
new_start = r_slope
# Row is scanned; do next row unless last square was blocked:
if blocked:
break
def do_fov(self, x, y, radius):
"Calculate lit squares from the given location and radius"
self.flag += 1
for oct in range(8):
self._cast_light(x, y, 1, 1.0, 0.0, radius,
mult_array[0, oct], mult_array[1, oct],
mult_array[2, oct], mult_array[3, oct], 0)
self.light[x, y] = self.flag
return self.light