FIKS_Entwicklungsumgebung/reload_agent.py
2021-11-24 17:39:26 +01:00

67 lines
2.6 KiB
Python

import warnings
from pathlib import Path
import numpy as np
import yaml
from environments import helpers as h
from environments.helpers import Constants as c
from environments.factory.factory_dirt import DirtFactory
from environments.factory.combined_factories import DirtItemFactory
from environments.logging.recorder import EnvRecorder
warnings.filterwarnings('ignore', category=FutureWarning)
warnings.filterwarnings('ignore', category=UserWarning)
if __name__ == '__main__':
determin = False
render = True
record = True
seed = 67
n_agents = 2
out_path = Path('study_out/e_1_obs_stack_3_gae_0.25_n_steps_16/seperate_N/dirt/A2C_obs_stack_3_gae_0.25_n_steps_16/0_A2C_obs_stack_3_gae_0.25_n_steps_16')
out_path_2 = Path('study_out/e_1_obs_stack_3_gae_0.25_n_steps_16/seperate_N/dirt/A2C_obs_stack_3_gae_0.25_n_steps_16/1_A2C_obs_stack_3_gae_0.25_n_steps_16')
model_path = out_path
with (out_path / f'env_params.json').open('r') as f:
env_kwargs = yaml.load(f, Loader=yaml.FullLoader)
env_kwargs.update(additional_agent_placeholder=None, n_agents=n_agents, max_steps=150)
if gain_amount := env_kwargs.get('dirt_prop', {}).get('gain_amount', None):
env_kwargs['dirt_prop']['max_spawn_amount'] = gain_amount
del env_kwargs['dirt_prop']['gain_amount']
env_kwargs.update(record_episodes=record, done_at_collision=True)
this_model = out_path / 'model.zip'
other_model = out_path / 'model.zip'
model_cls = next(val for key, val in h.MODEL_MAP.items() if key in out_path.parent.name)
models = [model_cls.load(this_model), model_cls.load(other_model)]
# Init Env
with DirtFactory(**env_kwargs) as env:
env = EnvRecorder(env)
obs_shape = env.observation_space.shape
# Evaluation Loop for i in range(n Episodes)
for episode in range(50):
env_state = env.reset()
rew, done_bool = 0, False
while not done_bool:
if n_agents > 1:
actions = [model.predict(
np.stack([env_state[i][j] for i in range(env_state.shape[0])]),
deterministic=determin)[0] for j, model in enumerate(models)]
else:
actions = models[0].predict(env_state, deterministic=determin)[0]
env_state, step_r, done_bool, info_obj = env.step(actions)
rew += step_r
if render:
env.render()
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
print('all done')