2022-01-28 11:07:25 +01:00

198 lines
7.8 KiB
Python

import torch
from typing import Union, List
import copy
import numpy as np
from torch.distributions import Categorical
from algorithms.marl.memory import MARLActorCriticMemory
from algorithms.utils import add_env_props, instantiate_class
from pathlib import Path
import pandas as pd
from collections import deque
ListOrTensor = Union[List, torch.Tensor]
class BaseActorCritic:
def __init__(self, cfg):
add_env_props(cfg)
self.__training = True
self.cfg = cfg
self.n_agents = cfg['env']['n_agents']
self.setup()
def setup(self):
self.net = instantiate_class(self.cfg['agent'])
self.optimizer = torch.optim.RMSprop(self.net.parameters(), lr=3e-4, eps=1e-5)
@classmethod
def _as_torch(cls, x):
if isinstance(x, np.ndarray):
return torch.from_numpy(x)
elif isinstance(x, List):
return torch.tensor(x)
elif isinstance(x, (int, float)):
return torch.tensor([x])
return x
def train(self):
self.__training = False
networks = [self.net] if not isinstance(self.net, List) else self.net
for net in networks:
net.train()
def eval(self):
self.__training = False
networks = [self.net] if not isinstance(self.net, List) else self.net
for net in networks:
net.eval()
def load_state_dict(self, path: Path):
pass
def get_actions(self, out) -> ListOrTensor:
actions = [Categorical(logits=logits).sample().item() for logits in out['logits']]
return actions
def init_hidden(self) -> dict[ListOrTensor]:
pass
def forward(self,
observations: ListOrTensor,
actions: ListOrTensor,
hidden_actor: ListOrTensor,
hidden_critic: ListOrTensor
) -> dict[ListOrTensor]:
pass
@torch.no_grad()
def train_loop(self, checkpointer=None):
env = instantiate_class(self.cfg['env'])
n_steps, max_steps = [self.cfg['algorithm'][k] for k in ['n_steps', 'max_steps']]
global_steps, episode, df_results = 0, 0, []
reward_queue = deque(maxlen=2000)
memory_queue = deque(maxlen=self.cfg['algorithm'].get('keep_n_segments', 1))
while global_steps < max_steps:
tm = MARLActorCriticMemory(self.n_agents)
obs = env.reset()
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log = [False] * self.n_agents, 0
tm.add(action=last_action, **last_hiddens)
while not all(done):
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
next_obs, reward, done, info = env.step(action)
next_obs = next_obs
if isinstance(done, bool): done = [done] * self.n_agents
tm.add(observation=obs, action=action, reward=reward, done=done,
logits=out.get('logits', None), values=out.get('critic', None))
obs = next_obs
last_action = action
last_hiddens = dict(hidden_actor=out.get('hidden_actor', None),
hidden_critic=out.get('hidden_critic', None)
)
if len(tm) >= n_steps or all(done):
tm.add(observation=next_obs)
memory_queue.append(copy.deepcopy(tm))
if self.__training:
with torch.inference_mode(False):
tm_ = tm if memory_queue.maxlen <= 1 else list(memory_queue)
self.learn(tm_)
tm.reset()
tm.add(action=last_action, **last_hiddens)
global_steps += 1
rew_log += sum(reward)
reward_queue.extend(reward)
if checkpointer is not None:
checkpointer.step([
(f'agent#{i}', agent)
for i, agent in enumerate([self.net] if not isinstance(self.net, List) else self.net)
])
if global_steps >= max_steps: break
print(f'reward at step: {episode} = {rew_log}')
episode += 1
df_results.append([global_steps, rew_log])
df_results = pd.DataFrame(df_results, columns=['steps', 'reward'])
if checkpointer is not None:
df_results.to_csv(checkpointer.path / 'results.csv', index=False)
return df_results
@torch.inference_mode(True)
def eval_loop(self, n_episodes, render=False):
env = instantiate_class(self.cfg['env'])
episode, results = 0, []
while episode < n_episodes:
obs = env.reset()
last_hiddens = self.init_hidden()
last_action, reward = [-1] * self.n_agents, [0.] * self.n_agents
done, rew_log, eps_rew = [False] * self.n_agents, 0, torch.zeros(self.n_agents)
while not all(done):
if render: env.render()
out = self.forward(obs, last_action, **last_hiddens)
action = self.get_actions(out)
next_obs, reward, done, info = env.step(action)
if isinstance(done, bool): done = [done] * obs.shape[0]
obs = next_obs
last_action = action
last_hiddens = dict(hidden_actor=out.get('hidden_actor', None),
hidden_critic=out.get('hidden_critic', None)
)
eps_rew += torch.tensor(reward)
results.append(eps_rew.tolist() + [sum(eps_rew).item()] + [episode])
episode += 1
agent_columns = [f'agent#{i}' for i in range(self.cfg['env']['n_agents'])]
results = pd.DataFrame(results, columns=agent_columns + ['sum', 'episode'])
results = pd.melt(results, id_vars=['episode'], value_vars=agent_columns + ['sum'], value_name='reward', var_name='agent')
return results
@staticmethod
def compute_advantages(critic, reward, done, gamma, gae_coef=0.0):
tds = (reward + gamma * (1.0 - done) * critic[:, 1:].detach()) - critic[:, :-1]
if gae_coef <= 0:
return tds
gae = torch.zeros_like(tds[:, -1])
gaes = []
for t in range(tds.shape[1]-1, -1, -1):
gae = tds[:, t] + gamma * gae_coef * (1.0 - done[:, t]) * gae
gaes.insert(0, gae)
gaes = torch.stack(gaes, dim=1)
return gaes
def actor_critic(self, tm, network, gamma, entropy_coef, vf_coef, gae_coef=0.0, **kwargs):
obs, actions, done, reward = tm.observation, tm.action, tm.done, tm.reward
out = network(obs, actions, tm.hidden_actor, tm.hidden_critic)
logits = out['logits'][:, :-1] # last one only needed for v_{t+1}
critic = out['critic']
entropy_loss = Categorical(logits=logits).entropy().mean(-1)
advantages = self.compute_advantages(critic, reward, done, gamma, gae_coef)
value_loss = advantages.pow(2).mean(-1) # n_agent
# policy loss
log_ap = torch.log_softmax(logits, -1)
log_ap = torch.gather(log_ap, dim=-1, index=actions[:, 1:].unsqueeze(-1)).squeeze()
a2c_loss = -(advantages.detach() * log_ap).mean(-1)
# weighted loss
loss = a2c_loss + vf_coef*value_loss - entropy_coef * entropy_loss
return loss.mean()
def learn(self, tm: MARLActorCriticMemory, **kwargs):
loss = self.actor_critic(tm, self.net, **self.cfg['algorithm'], **kwargs)
# remove next_obs, will be added in next iter
self.optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(self.net.parameters(), 0.5)
self.optimizer.step()