FIKS_Entwicklungsumgebung/quickstart/combine_and_monitor_rerun.py

188 lines
8.0 KiB
Python

import sys
from pathlib import Path
##############################################
# keep this for stand alone script execution #
##############################################
from environments.factory.base.base_factory import BaseFactory
from environments.logging.recorder import EnvRecorder
try:
# noinspection PyUnboundLocalVariable
if __package__ is None:
DIR = Path(__file__).resolve().parent
sys.path.insert(0, str(DIR.parent))
__package__ = DIR.name
else:
DIR = None
except NameError:
DIR = None
pass
##############################################
##############################################
##############################################
import simplejson
from environments import helpers as h
from environments.factory.additional.combined_factories import DestBatteryFactory
from environments.factory.additional.dest.factory_dest import DestFactory
from environments.factory.additional.dirt.factory_dirt import DirtFactory
from environments.factory.additional.item.factory_item import ItemFactory
from environments.helpers import ObservationTranslator, ActionTranslator
from environments.logging.envmonitor import EnvMonitor
from environments.utility_classes import ObservationProperties, AgentRenderOptions, MovementProperties
def policy_model_kwargs():
return dict(ent_coef=0.01)
def dqn_model_kwargs():
return dict(buffer_size=50000,
learning_starts=64,
batch_size=64,
target_update_interval=5000,
exploration_fraction=0.25,
exploration_final_eps=0.025
)
def encapsule_env_factory(env_fctry, env_kwrgs):
def _init():
with env_fctry(**env_kwrgs) as init_env:
return init_env
return _init
if __name__ == '__main__':
# Define Global Env Parameters
# Define properties object parameters
factory_kwargs = dict(
max_steps=400, parse_doors=True,
level_name='rooms',
doors_have_area=True, verbose=False,
mv_prop=MovementProperties(allow_diagonal_movement=True,
allow_square_movement=True,
allow_no_op=False),
obs_prop=ObservationProperties(
frames_to_stack=3,
cast_shadows=True,
omit_agent_self=True,
render_agents=AgentRenderOptions.LEVEL,
additional_agent_placeholder=None,
)
)
# Bundle both environments with global kwargs and parameters
# Todo: find a better solution, like outo module loading
env_map = {'DirtFactory': DirtFactory,
'ItemFactory': ItemFactory,
'DestFactory': DestFactory,
'DestBatteryFactory': DestBatteryFactory
}
env_names = list(env_map.keys())
# Put all your multi-seed agends in a single folder, we do not need specific names etc.
available_models = dict()
available_envs = dict()
available_runs_kwargs = dict()
available_runs_agents = dict()
max_seed = 0
# Define this folder
combinations_path = Path('combinations')
# Those are all differently trained combinations of mdoels, env and parameters
for combination in (x for x in combinations_path.iterdir() if x.is_dir()):
# These are all the models for this specific combination
for model_run in (x for x in combination.iterdir() if x.is_dir()):
model_name, env_name = model_run.name.split('_')[:2]
if model_name not in available_models:
available_models[model_name] = h.MODEL_MAP[model_name]
if env_name not in available_envs:
available_envs[env_name] = env_map[env_name]
# Those are all available seeds
for seed_run in (x for x in model_run.iterdir() if x.is_dir()):
max_seed = max(int(seed_run.name.split('_')[0]), max_seed)
# Read the env configuration from ROM
with next(seed_run.glob('env_params.json')).open('r') as f:
env_kwargs = simplejson.load(f)
available_runs_kwargs[seed_run.name] = env_kwargs
# Read the trained model_path from ROM
model_path = next(seed_run.glob('model.zip'))
available_runs_agents[seed_run.name] = model_path
# We start by combining all SAME MODEL CLASSES per available Seed, across ALL available ENVIRONMENTS.
for model_name, model_cls in available_models.items():
for seed in range(max_seed):
combined_env_kwargs = dict()
model_paths = list()
comparable_runs = {key: val for key, val in available_runs_kwargs.items() if (
key.startswith(str(seed)) and model_name in key and key != 'key')
}
for name, run_kwargs in comparable_runs.items():
# Select trained agent as a candidate:
model_paths.append(available_runs_agents[name])
# Sort Env Kwars:
for key, val in run_kwargs.items():
if key not in combined_env_kwargs:
combined_env_kwargs.update(dict(key=val))
else:
assert combined_env_kwargs[key] == val, "Check the combinations you try to make!"
# Update and combine all kwargs to account for multiple agents etc.
# We cannot capture all configuration cases!
for key, val in factory_kwargs.items():
if key not in combined_env_kwargs:
combined_env_kwargs[key] = val
else:
assert combined_env_kwargs[key] == val
combined_env_kwargs.update(n_agents=len(comparable_runs))
with(type("CombinedEnv", tuple(available_envs.values()), {})(**combined_env_kwargs)) as combEnv:
# EnvMonitor Init
comb = f'comb_{model_name}_{seed}'
comb_monitor_path = combinations_path / comb / f'{comb}_monitor.pick'
comb_recorder_path = combinations_path / comb / f'{comb}_recorder.pick'
comb_monitor_path.parent.mkdir(parents=True, exist_ok=True)
monitoredCombEnv = EnvMonitor(combEnv, filepath=comb_monitor_path)
# monitoredCombEnv = EnvRecorder(monitoredCombEnv, filepath=comb_monitor_path)
# Evaluation starts here #####################################################
# Load all models
loaded_models = [available_models[model_name].load(model_path) for model_path in model_paths]
obs_translators = ObservationTranslator(
monitoredCombEnv.named_observation_space,
*[agent.named_observation_space for agent in loaded_models],
placeholder_fill_value='n')
act_translators = ActionTranslator(
monitoredCombEnv.named_action_space,
*(agent.named_action_space for agent in loaded_models)
)
for episode in range(50):
obs, _ = monitoredCombEnv.reset(), monitoredCombEnv.render()
rew, done_bool = 0, False
while not done_bool:
actions = []
for i, model in enumerate(loaded_models):
pred = model.predict(obs_translators.translate_observation(i, obs[i]))[0]
actions.append(act_translators.translate_action(i, pred))
obs, step_r, done_bool, info_obj = monitoredCombEnv.step(actions)
rew += step_r
monitoredCombEnv.render()
if done_bool:
break
print(f'Factory run {episode} done, reward is:\n {rew}')
# Eval monitor outputs are automatically stored by the monitor object
# TODO: Plotting
monitoredCombEnv.save_records(comb_monitor_path)
monitoredCombEnv.save_run()
pass