194 lines
8.5 KiB
Python

import time
from typing import List, Union, Dict
import numpy as np
import random
from environments.factory.additional.item.item_collections import ItemRegister, Inventories, DropOffLocations
from environments.factory.additional.item.item_util import Constants, Actions, RewardsItem, ItemProperties
from environments.factory.base.base_factory import BaseFactory
from environments.factory.base.objects import Agent, Action
from environments.factory.base.registers import Entities
from environments.factory.base.renderer import RenderEntity
c = Constants
a = Actions
# noinspection PyAttributeOutsideInit, PyAbstractClass
class ItemFactory(BaseFactory):
# noinspection PyMissingConstructor
def __init__(self, *args, item_prop: ItemProperties = ItemProperties(), env_seed=time.time_ns(),
rewards_item: RewardsItem = RewardsItem(), **kwargs):
if isinstance(item_prop, dict):
item_prop = ItemProperties(**item_prop)
if isinstance(rewards_item, dict):
rewards_item = RewardsItem(**rewards_item)
self.item_prop = item_prop
self.rewards_item = rewards_item
kwargs.update(env_seed=env_seed)
self._item_rng = np.random.default_rng(env_seed)
assert (item_prop.n_items <= ((1 + kwargs.get('_pomdp_r', 0) * 2) ** 2)) or not kwargs.get('_pomdp_r', 0)
super().__init__(*args, **kwargs)
@property
def actions_hook(self) -> Union[Action, List[Action]]:
# noinspection PyUnresolvedReferences
super_actions = super().actions_hook
super_actions.append(Action(str_ident=a.ITEM_ACTION))
return super_actions
@property
def entities_hook(self) -> Dict[(str, Entities)]:
# noinspection PyUnresolvedReferences
super_entities = super().entities_hook
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_prop.n_drop_off_locations]
drop_offs = DropOffLocations.from_tiles(
empty_tiles, self._level_shape,
entity_kwargs=dict(
storage_size_until_full=self.item_prop.max_dropoff_storage_size)
)
item_register = ItemRegister(self._level_shape)
empty_tiles = self[c.FLOOR].empty_tiles[:self.item_prop.n_items]
item_register.spawn_items(empty_tiles)
inventories = Inventories(self._obs_shape, self._level_shape)
inventories.spawn_inventories(self[c.AGENT], self.item_prop.max_agent_inventory_capacity)
super_entities.update({c.DROP_OFF: drop_offs, c.ITEM: item_register, c.INVENTORY: inventories})
return super_entities
def per_agent_raw_observations_hook(self, agent) -> Dict[str, np.typing.ArrayLike]:
additional_raw_observations = super().per_agent_raw_observations_hook(agent)
additional_raw_observations.update({c.INVENTORY: self[c.INVENTORY].by_entity(agent).as_array()})
return additional_raw_observations
def observations_hook(self) -> Dict[str, np.typing.ArrayLike]:
additional_observations = super().observations_hook()
additional_observations.update({c.ITEM: self[c.ITEM].as_array()})
additional_observations.update({c.DROP_OFF: self[c.DROP_OFF].as_array()})
return additional_observations
def do_item_action(self, agent: Agent) -> (dict, dict):
inventory = self[c.INVENTORY].by_entity(agent)
if drop_off := self[c.DROP_OFF].by_pos(agent.pos):
if inventory:
valid = drop_off.place_item(inventory.pop())
else:
valid = c.NOT_VALID
if valid:
self.print(f'{agent.name} just dropped of an item at {drop_off.pos}.')
info_dict = {f'{agent.name}_DROPOFF_VALID': 1, 'DROPOFF_VALID': 1}
else:
self.print(f'{agent.name} just tried to drop off at {agent.pos}, but failed.')
info_dict = {f'{agent.name}_DROPOFF_FAIL': 1, 'DROPOFF_FAIL': 1}
reward = dict(value=self.rewards_item.DROP_OFF_VALID if valid else self.rewards_item.DROP_OFF_FAIL,
reason=a.ITEM_ACTION, info=info_dict)
return valid, reward
elif item := self[c.ITEM].by_pos(agent.pos):
item.change_parent_collection(inventory)
item.set_tile_to(self._NO_POS_TILE)
self.print(f'{agent.name} just picked up an item at {agent.pos}')
info_dict = {f'{agent.name}_{a.ITEM_ACTION}_VALID': 1, f'{a.ITEM_ACTION}_VALID': 1}
return c.VALID, dict(value=self.rewards_item.PICK_UP_VALID, reason=a.ITEM_ACTION, info=info_dict)
else:
self.print(f'{agent.name} just tried to pick up an item at {agent.pos}, but failed.')
info_dict = {f'{agent.name}_{a.ITEM_ACTION}_FAIL': 1, f'{a.ITEM_ACTION}_FAIL': 1}
return c.NOT_VALID, dict(value=self.rewards_item.PICK_UP_FAIL, reason=a.ITEM_ACTION, info=info_dict)
def do_additional_actions(self, agent: Agent, action: Action) -> (dict, dict):
# noinspection PyUnresolvedReferences
action_result = super().do_additional_actions(agent, action)
if action_result is None:
if action == a.ITEM_ACTION:
action_result = self.do_item_action(agent)
return action_result
else:
return None
else:
return action_result
def reset_hook(self) -> None:
# noinspection PyUnresolvedReferences
super().reset_hook()
self._next_item_spawn = self.item_prop.spawn_frequency
self.trigger_item_spawn()
def trigger_item_spawn(self):
if item_to_spawns := max(0, (self.item_prop.n_items - len(self[c.ITEM]))):
empty_tiles = self[c.FLOOR].empty_tiles[:item_to_spawns]
self[c.ITEM].spawn_items(empty_tiles)
self._next_item_spawn = self.item_prop.spawn_frequency
self.print(f'{item_to_spawns} new items have been spawned; next spawn in {self._next_item_spawn}')
else:
self.print('No Items are spawning, limit is reached.')
def step_hook(self) -> (List[dict], dict):
# noinspection PyUnresolvedReferences
super_reward_info = super().step_hook()
for item in list(self[c.ITEM].values()):
if item.auto_despawn >= 1:
item.set_auto_despawn(item.auto_despawn-1)
elif not item.auto_despawn:
self[c.ITEM].delete_env_object(item)
else:
pass
if not self._next_item_spawn:
self.trigger_item_spawn()
else:
self._next_item_spawn = max(0, self._next_item_spawn-1)
return super_reward_info
def render_assets_hook(self, mode='human'):
# noinspection PyUnresolvedReferences
additional_assets = super().render_assets_hook()
items = [RenderEntity(c.ITEM, item.tile.pos) for item in self[c.ITEM] if item.tile != self._NO_POS_TILE]
additional_assets.extend(items)
drop_offs = [RenderEntity(c.DROP_OFF, drop_off.tile.pos) for drop_off in self[c.DROP_OFF]]
additional_assets.extend(drop_offs)
return additional_assets
if __name__ == '__main__':
from environments.utility_classes import AgentRenderOptions as aro, ObservationProperties
render = True
item_probs = ItemProperties(n_items=30, n_drop_off_locations=6)
obs_props = ObservationProperties(render_agents=aro.SEPERATE, omit_agent_self=True, pomdp_r=2)
move_props = {'allow_square_movement': True,
'allow_diagonal_movement': True,
'allow_no_op': False}
factory = ItemFactory(n_agents=6, done_at_collision=False,
level_name='rooms', max_steps=400,
obs_prop=obs_props, parse_doors=True,
record_episodes=True, verbose=True,
mv_prop=move_props, item_prop=item_probs
)
# noinspection DuplicatedCode
n_actions = factory.action_space.n - 1
obs_space = factory.observation_space
obs_space_named = factory.named_observation_space
for epoch in range(400):
random_actions = [[random.randint(0, n_actions) for _
in range(factory.n_agents)] for _
in range(factory.max_steps + 1)]
env_state = factory.reset()
rwrd = 0
for agent_i_action in random_actions:
env_state, step_r, done_bool, info_obj = factory.step(agent_i_action)
rwrd += step_r
if render:
factory.render()
if done_bool:
break
print(f'Factory run {epoch} done, reward is:\n {rwrd}')
pass